Abstract
Correlation is a very effective way to align intensity images. We extend the correlation technique to point set registration using a method we call kernel correlation. Kernel correlation is an affinity measure, and it is also a function of the point set entropy. We define the point set registration problem as finding the maximum kernel correlation configuration of the the two point sets to be registered. The new registration method has intuitive interpretations, simple to implement algorithm and easy to prove convergence property. Our method shows favorable performance when compared with the iterative closest point (ICP) and EM-ICP methods.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE TPAMI 14(2), 239–256 (1992)
Borgefors, G.: Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE TPAMI 10(6), 849–865 (1988)
Chen, H., Meer, P.: Robust computer vision through kernel density estimation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. Part I, 236–250. Springer, Heidelberg (2002)
Fitsgibbon, A.: Robust registration of 2D and 3D point sets. In: BMVC 2001 (2001)
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE TPAMI 6, 1721–1741 (1984)
Granger, S., Pennec, X.: Multi-scale EM-ICP: A fast and robust approach for surface registration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 418–432. Springer, Heidelberg (2002)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer, Heidelberg (2001)
Huber, P.J.: Robust Statistics. John Wiley & Sons, New York (1981)
Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the hausdorff distance. IEEE TPAMI 15(9), 850–863 (1993)
Lavallée, S., Szeliski, R.: Recovering the position and orientation of free-form objects from image contours using 3-D distance maps. IEEE TPAMI 17(4), 378–390 (1995)
Parzen, E.: On estimation of a probability density function and mode. Annals of Mathematical Statistics 33(3), 1065–1076 (1962)
Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)
Principe, J., Xu, D.: Information-theoretic learning using Renyi’s quadratic entropy. In: First International Workshop on Independent Component Analysis (ICA 1999), pp. 407–412 (1999)
Rangarajan, A., Chui, H., Bookstein, F.L.: The softassign procrustes matching algorithm. Information Processing in Medical Imaging, pp. 29–42 (1997)
Rényi, A.: On measures of entropy and information. In: Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, pp. 547–561. University of California Press, Berkeley (1961)
Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley- Interscience, New York (1987)
Scott, G.L., Longuet-Higgins, H.C.: An algorithm for associating the features of two images. Proceedings: Biological Sciences 244(1309), 21–26 (1991)
Tsin, Y.: Kernel correlation as an affinity measure in point-sampled vision problems. Techical Report, CMU-RI-03-36 (2003)
Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. IJCV 13(2) (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tsin, Y., Kanade, T. (2004). A Correlation-Based Approach to Robust Point Set Registration. In: Pajdla, T., Matas, J. (eds) Computer Vision - ECCV 2004. ECCV 2004. Lecture Notes in Computer Science, vol 3023. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24672-5_44
Download citation
DOI: https://doi.org/10.1007/978-3-540-24672-5_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21982-8
Online ISBN: 978-3-540-24672-5
eBook Packages: Springer Book Archive