Nothing Special   »   [go: up one dir, main page]

Skip to main content

Unsupervised Hierarchical Weighted Multi-segmenter

  • Conference paper
Multiple Classifier Systems (MCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5519))

Included in the following conference series:

Abstract

An unsupervised multi-spectral, multi-resolution, multiple-segmenter for textured images with unknown number of classes is presented. The segmenter is based on a weighted combination of several unsupervised segmentation results, each in different resolution, using the modified sum rule. Multi-spectral textured image mosaics are locally represented by four causal directional multi-spectral random field models recursively evaluated for each pixel. The single-resolution segmentation part of the algorithm is based on the underlying Gaussian mixture model and starts with an over segmented initial estimation which is adaptively modified until the optimal number of homogeneous texture segments is reached. The performance of the presented method is extensively tested on the Prague segmentation benchmark using the commonest segmentation criteria and compares favourably with several leading alternative image segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Reed, T.R., du Buf, J.M.H.: A review of recent texture segmentation and feature extraction techniques. CVGIP–Image Understanding 57(3), 359–372 (1993)

    Article  Google Scholar 

  2. Haindl, M.: Texture synthesis. CWI Quarterly 4(4), 305–331 (1991)

    MATH  Google Scholar 

  3. Panjwani, D., Healey, G.: Markov random field models for unsupervised segmentation of textured color images. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(10), 939–954 (1995)

    Article  Google Scholar 

  4. Manjunath, B., Chellapa, R.: Unsupervised texture segmentation using markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 478–482 (1991)

    Article  Google Scholar 

  5. Haindl, M.: Texture segmentation using recursive markov random field parameter estimation. In: Proceedings of the 11th Scandinavian Conference on Image Analysis, Lyngby, Denmark, Pattern Recognition Society of Denmark, pp. 771–776 (1999)

    Google Scholar 

  6. Haindl, M., Mikeš, S.: Model-based texture segmentation. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 306–313. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Haindl, M., Mikeš, S.: Unsupervised texture segmentation using multispectral modelling approach. In: Proceedings of the 18th Int. Conf. on Pattern Recognition, ICPR 2006, vol. II, pp. 203–206. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  8. Haindl, M., Mikes, S.: Unsupervised texture segmentation using multiple segmenters strategy. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 210–219. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Sharon, E., Galun, M., Sharon, D., Basri, R., Brandt, A.: Hierarchy and adaptivity in segmenting visual scenes. Nature 442(7104), 719–846 (2006)

    Article  Google Scholar 

  10. Kittler, J., Hojjatoleslami, A., Windeatt, T.: Weighting factors in multiple expert fusion. In: Proc. BMVC, BMVA, pp. 41–50 (1997)

    Google Scholar 

  11. Haindl, M., Šimberová, S.: A Multispectral Image Line Reconstruction Method. In: Theory & Applications of Image Analysis, pp. 306–315. World Scientific Publishing Co., Singapore (1992)

    Chapter  Google Scholar 

  12. Haindl, M., Mikeš, S.: Texture segmentation benchmark. In: Lovell, B., Laurendeau, D., Duin, R. (eds.) Proceedings of the 19th Int. Conf. on Pattern Recognition, ICPR 2008. IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  13. Scarpa, G., Haindl, M., Zerubia, J.: A hierarchical finite-state model for texture segmentation. In: ICASSP 2007. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, vol. I, pp. 1209–1212. IEEE, Los Alamitos (2007)

    Google Scholar 

  14. Scarpa, G., Haindl, M.: Unsupervised texture segmentation by spectral-spatial-independent clustering. In: Proc. of the 18th Int. Conf. on Pattern Recognition, ICPR 2006, vol. II, pp. 151–154. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  15. Hoang, M.A., Geusebroek, J.M., Smeulders, A.W.: Color texture measurement and segmentation. Signal Processing 85(2), 265–275 (2005)

    Article  MATH  Google Scholar 

  16. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. IJCV 59(2), 167–181 (2004)

    Article  Google Scholar 

  17. Deng, Y., Manjunath, B.: Unsupervised segmentation of color-texture regions in images and video. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(8), 800–810 (2001)

    Article  Google Scholar 

  18. Carson, C., Thomas, M., Belongie, S., Hellerstein, J.M., Malik, J.: Blobworld: A system for region-based image indexing and retrieval. In: Third International Conference on Visual Information Systems. Springer, Heidelberg (1999)

    Google Scholar 

  19. Christoudias, C., Georgescu, B., Meer, P.: Synergism in low level vision. In: Proceedings of the 16th Int. Conf. on Pattern Recognition, vol. 4, pp. 150–155. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haindl, M., Mikeš, S., Pudil, P. (2009). Unsupervised Hierarchical Weighted Multi-segmenter. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2009. Lecture Notes in Computer Science, vol 5519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02326-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02326-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02325-5

  • Online ISBN: 978-3-642-02326-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics