Abstract
An unsupervised multi-spectral, multi-resolution, multiple-segmenter for textured images with unknown number of classes is presented. The segmenter is based on a weighted combination of several unsupervised segmentation results, each in different resolution, using the modified sum rule. Multi-spectral textured image mosaics are locally represented by four causal directional multi-spectral random field models recursively evaluated for each pixel. The single-resolution segmentation part of the algorithm is based on the underlying Gaussian mixture model and starts with an over segmented initial estimation which is adaptively modified until the optimal number of homogeneous texture segments is reached. The performance of the presented method is extensively tested on the Prague segmentation benchmark using the commonest segmentation criteria and compares favourably with several leading alternative image segmentation methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Reed, T.R., du Buf, J.M.H.: A review of recent texture segmentation and feature extraction techniques. CVGIP–Image Understanding 57(3), 359–372 (1993)
Haindl, M.: Texture synthesis. CWI Quarterly 4(4), 305–331 (1991)
Panjwani, D., Healey, G.: Markov random field models for unsupervised segmentation of textured color images. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(10), 939–954 (1995)
Manjunath, B., Chellapa, R.: Unsupervised texture segmentation using markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 478–482 (1991)
Haindl, M.: Texture segmentation using recursive markov random field parameter estimation. In: Proceedings of the 11th Scandinavian Conference on Image Analysis, Lyngby, Denmark, Pattern Recognition Society of Denmark, pp. 771–776 (1999)
Haindl, M., Mikeš, S.: Model-based texture segmentation. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 306–313. Springer, Heidelberg (2004)
Haindl, M., Mikeš, S.: Unsupervised texture segmentation using multispectral modelling approach. In: Proceedings of the 18th Int. Conf. on Pattern Recognition, ICPR 2006, vol. II, pp. 203–206. IEEE Computer Society, Los Alamitos (2006)
Haindl, M., Mikes, S.: Unsupervised texture segmentation using multiple segmenters strategy. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 210–219. Springer, Heidelberg (2007)
Sharon, E., Galun, M., Sharon, D., Basri, R., Brandt, A.: Hierarchy and adaptivity in segmenting visual scenes. Nature 442(7104), 719–846 (2006)
Kittler, J., Hojjatoleslami, A., Windeatt, T.: Weighting factors in multiple expert fusion. In: Proc. BMVC, BMVA, pp. 41–50 (1997)
Haindl, M., Šimberová, S.: A Multispectral Image Line Reconstruction Method. In: Theory & Applications of Image Analysis, pp. 306–315. World Scientific Publishing Co., Singapore (1992)
Haindl, M., Mikeš, S.: Texture segmentation benchmark. In: Lovell, B., Laurendeau, D., Duin, R. (eds.) Proceedings of the 19th Int. Conf. on Pattern Recognition, ICPR 2008. IEEE Computer Society, Los Alamitos (2008)
Scarpa, G., Haindl, M., Zerubia, J.: A hierarchical finite-state model for texture segmentation. In: ICASSP 2007. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, vol. I, pp. 1209–1212. IEEE, Los Alamitos (2007)
Scarpa, G., Haindl, M.: Unsupervised texture segmentation by spectral-spatial-independent clustering. In: Proc. of the 18th Int. Conf. on Pattern Recognition, ICPR 2006, vol. II, pp. 151–154. IEEE Computer Society, Los Alamitos (2006)
Hoang, M.A., Geusebroek, J.M., Smeulders, A.W.: Color texture measurement and segmentation. Signal Processing 85(2), 265–275 (2005)
Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. IJCV 59(2), 167–181 (2004)
Deng, Y., Manjunath, B.: Unsupervised segmentation of color-texture regions in images and video. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(8), 800–810 (2001)
Carson, C., Thomas, M., Belongie, S., Hellerstein, J.M., Malik, J.: Blobworld: A system for region-based image indexing and retrieval. In: Third International Conference on Visual Information Systems. Springer, Heidelberg (1999)
Christoudias, C., Georgescu, B., Meer, P.: Synergism in low level vision. In: Proceedings of the 16th Int. Conf. on Pattern Recognition, vol. 4, pp. 150–155. IEEE Computer Society, Los Alamitos (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Haindl, M., Mikeš, S., Pudil, P. (2009). Unsupervised Hierarchical Weighted Multi-segmenter. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2009. Lecture Notes in Computer Science, vol 5519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02326-2_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-02326-2_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02325-5
Online ISBN: 978-3-642-02326-2
eBook Packages: Computer ScienceComputer Science (R0)