Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Non-local spatially varying finite mixture models for image segmentation

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In this work, we propose a new Bayesian model for unsupervised image segmentation based on a combination of the spatially varying finite mixture models (SVFMMs) and the non-local means (NLM) framework. The probabilistic NLM weighting function is successfully integrated into a varying Gauss–Markov random field, yielding a prior density that adaptively imposes a local regularization to simultaneously preserve edges and enforce smooth constraints in homogeneous regions of the image. Two versions of our model are proposed: a pixel-based model and a patch-based model, depending on the design of the probabilistic NLM weighting function. Contrary to previous methods proposed in the literature, our approximation does not introduce new parameters to be estimated into the model, because the NLM weighting function is completely known once the neighborhood of a pixel is fixed. The proposed model can be estimated in closed-form solution via a maximum a posteriori (MAP) estimation in an expectation–maximization scheme. We have compared our model with previously proposed SVFMMs using two public datasets: the Berkeley Segmentation dataset and the BRATS 2013 dataset. The proposed model performs favorably to previous approaches in the literature, achieving better results in terms of Rand Index and Dice metrics in our experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, SODA ’07, pp. 1027–1035 (2007)

  • Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)

    MATH  Google Scholar 

  • Blake, A., Rother, C.: Markov Random Fields for Vision and Image Processing. MIT Press, Cambridge (2011)

    Book  Google Scholar 

  • Blekas, K., Likas, A., Galatsanos, N.P., Lagaris, I.E.: A spatially constrained mixture model for image segmentation. IEEE Trans. Neural Netw. 16(2), 494–498 (2005). https://doi.org/10.1109/TNN.2004.841773

    Article  Google Scholar 

  • Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001). https://doi.org/10.1109/34.969114

    Article  Google Scholar 

  • Buades, A., Coll, B., Morel, J.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 60–65 (2005). https://doi.org/10.1109/CVPR.2005.38

  • Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995). https://doi.org/10.1109/34.400568

    Article  Google Scholar 

  • Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  • Ester, M., Kriegel, HP., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, AAAI Press, Portland, Oregon, KDD’96, pp. 226–231 (1996)

  • Juan-Albarracín, J., Fuster-Garcia, E., Manjón, J.V., Robles, M., Aparici, F., Martí-Bonmatí, L., García-Gómez, J.M.: Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS ONE 10(5), e0125143 (2015). https://doi.org/10.1371/journal.pone.0125143

    Article  Google Scholar 

  • Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of 8th International Conference Computer Vision, vol. 2, pp. 416–423 (2001)

  • Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.A., Arbel, T., Avants, B.B., Ayache, N., Buendia, P., Collins, D.L., Cordier, N., Corso, J.J., Criminisi, A., Das, T., Delingette, H., Demiralp, C., Durst, C.R., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M., Konukoglu, E., Lashkari, D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price, S.J., Raviv, T.R., Reza, S.M.S., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H.C., Shotton, J., Silva, C.A., Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G., Vasseur, F., Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  • Neal, R., Hinton, G.: A view of the em algorithm that justifies incremental, sparse, and other variants. Learn. Graph. Models 89, 110 (1999). https://doi.org/10.1007/978-94-011-5014-9-12

    Article  Google Scholar 

  • Nikou, C., Galatsanos, N.P., Likas, A.C.: A class-adaptive spatially variant mixture model for image segmentation. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 16(4), 1121–1130 (2007)

    Article  MathSciNet  Google Scholar 

  • Nikou, C., Likas, A.C., Galatsanos, N.P.: A Bayesian framework for image segmentation with spatially varying mixtures. IEEE Trans. Image Process. 19(9), 2278–2289 (2010). https://doi.org/10.1109/TIP.2010.2047903

    Article  MathSciNet  MATH  Google Scholar 

  • Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recogn. 26(9), 1277–1294 (1993). https://doi.org/10.1016/0031-3203(93)90135-J

    Article  Google Scholar 

  • Rokach, L., Maimon, O.: Clustering methods. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer, Boston (2005). https://doi.org/10.1007/0-387-25465-X_15

    Chapter  MATH  Google Scholar 

  • Sanjay-Gopal, S., Hebert, T.J.: Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Process. 7(7), 1014–1028 (1998). https://doi.org/10.1109/83.701161

    Article  Google Scholar 

  • Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O.P., Tiwari, A., Er, M.J., Ding, W., Lin, C.T.: A review of clustering techniques and developments. Neurocomputing 267, 664–681 (2017). https://doi.org/10.1016/j.neucom.2017.06.053

    Article  Google Scholar 

  • Sfikas, G., Nikou, C., Galatsanos, N.: Edge preserving spatially varying mixtures for image segmentation. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7 (2008). https://doi.org/10.1109/CVPR.2008.4587416

  • Wu, Y., Tracey, B., Natarajan, P., Noonan, J.P.: Probabilistic non-local means. IEEE Signal Process. Lett. 20(8), 763–766 (2013). https://doi.org/10.1109/LSP.2013.2263135

    Article  Google Scholar 

  • Zhang, H., Fritts, J.E., Goldman, S.A.: Image segmentation evaluation: a survey of unsupervised methods. Comput. Vis. Image Underst. 110(2), 260–280 (2008). https://doi.org/10.1016/j.cviu.2007.08.003

    Article  Google Scholar 

Download references

Acknowledgements

This study is partially supported by Secretaría de Estado de Investigación, Desarrollo e Innovación (DPI2016-80054-R, TIN2013-43457-R) and Agencia Valenciana de la Innovación (INNVAL10/18/048). E.F.G was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement (No. 844646) and also acknowledges the support of NVIDIA GPU Grant Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Juan-Albarracín.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juan-Albarracín, J., Fuster-Garcia, E., Juan, A. et al. Non-local spatially varying finite mixture models for image segmentation. Stat Comput 31, 3 (2021). https://doi.org/10.1007/s11222-020-09988-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11222-020-09988-w

Keywords

Navigation