Abstract
In this work, we propose a new Bayesian model for unsupervised image segmentation based on a combination of the spatially varying finite mixture models (SVFMMs) and the non-local means (NLM) framework. The probabilistic NLM weighting function is successfully integrated into a varying Gauss–Markov random field, yielding a prior density that adaptively imposes a local regularization to simultaneously preserve edges and enforce smooth constraints in homogeneous regions of the image. Two versions of our model are proposed: a pixel-based model and a patch-based model, depending on the design of the probabilistic NLM weighting function. Contrary to previous methods proposed in the literature, our approximation does not introduce new parameters to be estimated into the model, because the NLM weighting function is completely known once the neighborhood of a pixel is fixed. The proposed model can be estimated in closed-form solution via a maximum a posteriori (MAP) estimation in an expectation–maximization scheme. We have compared our model with previously proposed SVFMMs using two public datasets: the Berkeley Segmentation dataset and the BRATS 2013 dataset. The proposed model performs favorably to previous approaches in the literature, achieving better results in terms of Rand Index and Dice metrics in our experiments.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, SODA ’07, pp. 1027–1035 (2007)
Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)
Blake, A., Rother, C.: Markov Random Fields for Vision and Image Processing. MIT Press, Cambridge (2011)
Blekas, K., Likas, A., Galatsanos, N.P., Lagaris, I.E.: A spatially constrained mixture model for image segmentation. IEEE Trans. Neural Netw. 16(2), 494–498 (2005). https://doi.org/10.1109/TNN.2004.841773
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001). https://doi.org/10.1109/34.969114
Buades, A., Coll, B., Morel, J.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 60–65 (2005). https://doi.org/10.1109/CVPR.2005.38
Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995). https://doi.org/10.1109/34.400568
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977)
Ester, M., Kriegel, HP., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, AAAI Press, Portland, Oregon, KDD’96, pp. 226–231 (1996)
Juan-Albarracín, J., Fuster-Garcia, E., Manjón, J.V., Robles, M., Aparici, F., Martí-Bonmatí, L., García-Gómez, J.M.: Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS ONE 10(5), e0125143 (2015). https://doi.org/10.1371/journal.pone.0125143
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of 8th International Conference Computer Vision, vol. 2, pp. 416–423 (2001)
Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.A., Arbel, T., Avants, B.B., Ayache, N., Buendia, P., Collins, D.L., Cordier, N., Corso, J.J., Criminisi, A., Das, T., Delingette, H., Demiralp, C., Durst, C.R., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M., Konukoglu, E., Lashkari, D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price, S.J., Raviv, T.R., Reza, S.M.S., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H.C., Shotton, J., Silva, C.A., Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G., Vasseur, F., Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694
Neal, R., Hinton, G.: A view of the em algorithm that justifies incremental, sparse, and other variants. Learn. Graph. Models 89, 110 (1999). https://doi.org/10.1007/978-94-011-5014-9-12
Nikou, C., Galatsanos, N.P., Likas, A.C.: A class-adaptive spatially variant mixture model for image segmentation. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 16(4), 1121–1130 (2007)
Nikou, C., Likas, A.C., Galatsanos, N.P.: A Bayesian framework for image segmentation with spatially varying mixtures. IEEE Trans. Image Process. 19(9), 2278–2289 (2010). https://doi.org/10.1109/TIP.2010.2047903
Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recogn. 26(9), 1277–1294 (1993). https://doi.org/10.1016/0031-3203(93)90135-J
Rokach, L., Maimon, O.: Clustering methods. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer, Boston (2005). https://doi.org/10.1007/0-387-25465-X_15
Sanjay-Gopal, S., Hebert, T.J.: Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Process. 7(7), 1014–1028 (1998). https://doi.org/10.1109/83.701161
Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O.P., Tiwari, A., Er, M.J., Ding, W., Lin, C.T.: A review of clustering techniques and developments. Neurocomputing 267, 664–681 (2017). https://doi.org/10.1016/j.neucom.2017.06.053
Sfikas, G., Nikou, C., Galatsanos, N.: Edge preserving spatially varying mixtures for image segmentation. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7 (2008). https://doi.org/10.1109/CVPR.2008.4587416
Wu, Y., Tracey, B., Natarajan, P., Noonan, J.P.: Probabilistic non-local means. IEEE Signal Process. Lett. 20(8), 763–766 (2013). https://doi.org/10.1109/LSP.2013.2263135
Zhang, H., Fritts, J.E., Goldman, S.A.: Image segmentation evaluation: a survey of unsupervised methods. Comput. Vis. Image Underst. 110(2), 260–280 (2008). https://doi.org/10.1016/j.cviu.2007.08.003
Acknowledgements
This study is partially supported by Secretaría de Estado de Investigación, Desarrollo e Innovación (DPI2016-80054-R, TIN2013-43457-R) and Agencia Valenciana de la Innovación (INNVAL10/18/048). E.F.G was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement (No. 844646) and also acknowledges the support of NVIDIA GPU Grant Program.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Juan-Albarracín, J., Fuster-Garcia, E., Juan, A. et al. Non-local spatially varying finite mixture models for image segmentation. Stat Comput 31, 3 (2021). https://doi.org/10.1007/s11222-020-09988-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11222-020-09988-w