Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5755))

Included in the following conference series:

Abstract

This paper presents a simulation study on fuzzy tests vs. ANOVA test on means. Type-1, Interval Type-2 and ANOVA classical tests are compared through a simulated experiment for contrasting the stability of those approaches in front to a small change on sample.

We perform an experiment of comparing the means of three groups where the classical ANOVA test is very nearby to the rejection p-value and the fuzzy tests get more robust results. In this way, we use bootstrap concepts to simulate the change of a random value of the sample to view the behavior of each technique in front to these changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buckley, J.J.: Fuzzy Probability and Statistics. Springer, Heidelberg (2004)

    Google Scholar 

  2. Buckley, J.J.: Fuzzy statistics: hypothesis testing. Soft Computing - A Fusion of Foundations, Methodologies and Applications 9, 512–518 (2005)

    MATH  MathSciNet  Google Scholar 

  3. Mohammadpuor, A., Mahammad Djafari, A.: On classical, bayesian and fuzzy hypothesis testing. Metrika 17, 348–354 (2004)

    Google Scholar 

  4. Mood, A.M., Graybill, F.A., Boes, D.C.: Introduction to the Theory of Statistics. McGraw Hill Book Company, New York (1974)

    MATH  Google Scholar 

  5. Wilks, A.: Mathematical Statistics. John Wiley and Sons, New York (1962)

    MATH  Google Scholar 

  6. Huber, P.: Robust Statistics. John Wiley and Sons, New York (1981)

    Book  MATH  Google Scholar 

  7. Arnold, B.: An approach to fuzzy hypothesis testing. Metrika 44, 119–126 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Last, M., Schenker, A., Kandel, A.: Applying fuzzy hypothesis testing to medical data. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS, vol. 1711, pp. 221–229. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Figueroa García, J.C., Soriano Mendez, J.J.: A fuzzy logic approach to test statistical hypothesis on means. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS (LNAI), vol. 5227, pp. 316–325. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Figueroa, J.C., Rodriguez, D., Sierra, A.: An interval type-2 fuzzy logic system to test statistical hypothesis on means. In: Proceedings of NAFIPS 2009, vol. 28 (2009)

    Google Scholar 

  11. Scheffe, H.: The analysis of Variance. John Wiley and Sons, Chichester (1991)

    Google Scholar 

  12. Searle, S.R.: Linear Models. John Wiley and Sons, Chichester (1971)

    MATH  Google Scholar 

  13. DiCiccio, T.J., Efron, B.: Bootstrap confidence intervals. Statistical Science 11, 189–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Efron, B.: Bootstrap methods: Another look at the jackknife. The Annals of Statistics 7, 1–26 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. Efron, B., Tibshirani, R.J.: Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science 1, 54–77 (1986)

    Article  MathSciNet  Google Scholar 

  16. Efron, B., Tibshirani, R.j.: Introduction to the bootstrap. Chapman and Hall, New York (1993)

    MATH  Google Scholar 

  17. Liu, Y.K., Liu, B.: Fuzzy random variables: A scalar expected value operator. Fuzzy optimization and Decision Making 2, 143–160 (2003)

    Article  MathSciNet  Google Scholar 

  18. Melgarejo, M., Bernal, H., Duran, K.: Improved iterative algorithm for computing the generalized centroid of an interval type-2 fuzzy set. In: Proceedings of NAFIPS 2009, vol. 27, pp. 1–6 (2008)

    Google Scholar 

  19. Zeng, J., Liu, Z.Q.: Enhanced Karnik-Mendel algorithms for Interval Type-2 fuzzy sets and systems. In: Proceedings of NAFIPS 2007, vol. 26, pp. 184–189 (2007)

    Google Scholar 

  20. Law, A., Kelton, D.: Simulation System and Analysis. McGraw Hill International, New York (2000)

    Google Scholar 

  21. Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986)

    MATH  Google Scholar 

  22. Wu, D., Mendel, J.M.: Uncertainty measures for interval type-2 fuzzy sets. Information Sciences 177, 5378–5393 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Melgarejo, M.A.: Implementing Interval Type-2 Fuzzy processors. IEEE Computational Intelligence Magazine 2, 63–71 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Figueroa García, J.C., Kalenatic, D., Lopez Bello, C.A. (2009). On the Robustness of Type-1 and Type-2 Fuzzy Tests vs. ANOVA Tests on Means. In: Huang, DS., Jo, KH., Lee, HH., Kang, HJ., Bevilacqua, V. (eds) Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence. ICIC 2009. Lecture Notes in Computer Science(), vol 5755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04020-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04020-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04019-1

  • Online ISBN: 978-3-642-04020-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics