Nothing Special   »   [go: up one dir, main page]

Skip to main content

Genetics-Based Machine Learning

  • Reference work entry
Handbook of Natural Computing

Abstract

This is a survey of the field of genetics-based machine learning (GBML): the application of evolutionary algorithms (ES) to machine learning. We assume readers are familiar with evolutionary algorithms and their application to optimization problems, but not necessarily with machine learning. We briefly outline the scope of machine learning, introduce the more specific area of supervised learning, contrast it with optimization and present arguments for and against GBML. Next we introduce a framework for GBML, which includes ways of classifying GBML algorithms and a discussion of the interaction between learning and evolution. We then review the following areas with emphasis on their evolutionary aspects: GBML for subproblems of learning, genetic programming, evolving ensembles, evolving neural networks, learning classifier systems, and genetic fuzzy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbass HA (2003) Speeding up backpropagation using multiobjective evolutionary algorithms. Neural Comput, 15(11):2705–2726

    Article  MATH  Google Scholar 

  • Ackley DH, Littman ML (1992) Interactions between learning and evolution. In: Langton C, Taylor C, Rasmussen S, Farmer J (eds) Artificial life II: Santa Fe institute studies in the sciences of Complexity, vol 10. Addison-Wesley, New York, pp 487–509

    Google Scholar 

  • Aguilar-Ruiz J, Riquelme J, Toro M (2003) Evolutionary learning of hierarchical decision rules. IEEE Trans Syst Man Cybern B 33(2):324–331

    Article  Google Scholar 

  • Ahluwalia M, Bull L (1999) A genetic programming-based classifier system. In: Banzhaf et al. (eds) GECCO-99: Proceedings of the genetic and evolutionary computation conference. Morgan Kaufmann, San Francisco, pp 11–18

    Google Scholar 

  • Andersen HC, Tsoi AC (1993) A constructive algorithm for the training of a multi-layer perceptron based on the genetic algorithm. Complex Syst, 7(4):249–268

    MATH  Google Scholar 

  • Angeline PJ, Sauders GM, Pollack JB (1994) An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans Neural Netw 5:54–65

    Article  Google Scholar 

  • Angelov P (2002) Evolving rule-based models: a tool for design of flexible adaptive systems. Studies in fuzziness and soft computing, vol 92. Springer, Heidelberg

    Google Scholar 

  • Asuncion A, Newman DJ (2009) UCI machine learning repository. http://www.ics.uci.edu/∼mlearn/MLRepository.html

  • Bacardit J, Stout M, Hirst JD and Krasnogor N (2008) Data mining in proteomics with learning classifier systems. In: Bull L, Bernadó Mansilla E, Holmes J (eds) Learning classifier systems in data mining. Springer, Berlin, pp 17–46

    Chapter  Google Scholar 

  • Bacardit J, Burke EK, Krasnogor N (2009a) Improving the scalability of rule-based evolutionary learning. Memetic Comput 1(1):55–57

    Google Scholar 

  • Bacardit J, Stout M, Hirst JD, Valencia A, Smith RE, Krasnogor N (2009b) Automated alphabet reduction for protein datasets. BMC Bioinformatics. vol 10, 6

    Google Scholar 

  • Bacardit J (2004) Pittsburgh genetic-based machine learning in the data mining era: representations, generalization, and run-time. PhD thesis, Universitat Ramon Llull, Barcelona, Spain

    Google Scholar 

  • Bacardit J, Goldberg DE, Butz MV (2007) Improving the performance of a Pittsburgh learning classifier system using a default rule. In: Kovacs T, Llòra X, Takadama K, Lanzi PL, Stolzmann W, Wilson SW (eds) Learning Classifier Systems. International workshops, IWLCS 2003–2005, Revised selected papers, Lecture notes in computer science, vol 4399. Springer, Berlin, pp 291–307

    Google Scholar 

  • Bacardit J, Krasnogor N (2008) Empirical evaluation of ensemble techniques for a Pittsburgh learning classifier system. In: Bacardit J, Bernadó-Mansilla E, Butz M, Kovacs T, Llorà X, Takadama K (eds) Learning Classifier Systems. 10th and 11th International Workshops (2006–2007), Lecture notes in computer science, vol 4998. Springer, Berlin, pp 255–268

    Google Scholar 

  • Bagnall AJ, Zatuchna ZV (2005) On the classification of maze problems. In: Bull L, Kovacs T (eds) Applications of learning classifier systems. Springer, Berlin, pp 307–316

    Google Scholar 

  • Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith RE (eds) (1999) GECCO-99: Proceedings of the genetic and evolutionary computation conference. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  • Barry A (1996) Hierarchy formulation within classifiers system: a review. In: Goodman EG, Uskov VL, Punch WF (eds) Proceedings of the first international conference on evolutionary algorithms and their application EVCA'96. The Presidium of the Russian Academy of Sciences, Moscow, pp 195–211

    Google Scholar 

  • Barry A (2000) XCS performance and population structure within multiple-step environments. PhD thesis, Queen’s University Belfast, Belfast

    Google Scholar 

  • Beielstein T, Markon S (2002) Threshold selection, hypothesis tests and DOE methods. In: 2002 congress on evolutionary computation. IEEE Press, Washington, DC, pp 777–782

    Google Scholar 

  • Belew RK, McInerney J, Schraudolph NN (1992) Evolving networks: using the genetic algorithm with connectionistic learning. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Proceedings of the 2nd conference on artificial life. Addison-Wesley, New York, pp 51–548

    Google Scholar 

  • Bernadó E, Llorà X, Garrell JM (2002) XCS and GALE: a comparative study of two learning classifier systems on data mining. In: Lanzi PL, Stolzmann W, Wilson SW (eds) Advances in learning classifier systems, Lecture notes in artificial intelligence, vol 2321. Springer, Berlin, pp 115–132

    Chapter  Google Scholar 

  • Bernadó-Mansilla E, Garrell-Guiu JM (2003) Accuracy-based learning classifier systems: models, analysis and applications to classification tasks. Evolut Comput 11(3):209–238

    Article  Google Scholar 

  • Bernadó-Mansilla E, Ho TK (2005) Domain of competence of XCS classifier system in complexity measurement space. IEEE Trans Evolut Comput 9(1):82–104

    Article  Google Scholar 

  • Bonarini A (2000) An introduction to learning fuzzy classifier systems. In: Lanzi PL, Stolzmann W, Wilson SW (eds) Learning classifier systems: from foundations to applications, Lecture note in artificial intelligence, vol 1813. Springer, Berlin, pp 83–104

    Google Scholar 

  • Bonelli P, Alexandre P (1991) An efficient classifier system and its experimental comparison with two representative learning methods on three medical domains. In: Booker LB, Belew RK (eds) Proceedings of the 14th international conference on genetic algorithms (ICGA'91). Morgan Kaufmann, San Francisco, CA, pp 288–295

    Google Scholar 

  • Booker LB (1989) Triggered rule discovery in classifier systems. In: Schaffer JD (ed) Proceedings of the 3rd international conference on genetic algorithms (ICGA-89). Morgan Kaufmann, San Francisco, CA, pp 265–274

    Google Scholar 

  • Booker LB (1991) Representing attribute-based concepts in a classifier system. In: Rawlins GJE (ed) Proceedings of the first workshop on foundations of genetic algorithms (FOGA91). Morgan Kaufmann, San Mateo, CA, pp 115–127

    Google Scholar 

  • Booker LB (2005a) Adaptive value function approximations in classifier systems. In: GECCO '05: proceedings of the 2005 workshops on genetic and evolutionary computation. ACM, New York, pp 90–91

    Google Scholar 

  • Booker LB (2005b) Approximating value functions in classifier systems. In: Bull L, Kovacs T (eds) Foundations of learning classifier systems (Studies in fuzziness and soft computing), Lecture notes in artificial intelligence, vol 183, Springer, Berlin, pp 45–61

    Google Scholar 

  • Booker LB, Belew RK (eds) (1991) Proceedings of the 4th international conference on genetic algorithms (ICGA91). Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  • Bot MCJ, Langdon WB (2000) Application of genetic programming to induction of linear classification trees. In: Genetic programming: proceedings of the 3rd European conference (EuroGP 2000), Lecture notes in computer science, vol 1802, Springer, Berlin, pp 247–258

    Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    MathSciNet  MATH  Google Scholar 

  • Breiman L (1998) Arcing classifiers. Ann Stat 26(3):801–845

    Article  MathSciNet  MATH  Google Scholar 

  • Brown G (2010) Ensemble learning. In: Sammut C, Webb G (eds) Encyclopedia of machine learning. Springer, Berlin

    Google Scholar 

  • Brown G, Wyatt J, Harris R, Yao X (2005) Diversity creation methods: A survey and categorisation. J Inform Fusion 6(1):5–20

    Article  Google Scholar 

  • Bull L (2009) On dynamical genetic programming: simple Boolean networks in learning classifier systems. IJPEDS 24(5):421–442

    Google Scholar 

  • Bull L, Studley M, Bagnall T, Whittley I (2007) On the use of rule-sharing in learning classifier system ensembles. IEEE Trans Evolut Comput 11:496–502

    Article  Google Scholar 

  • Bull L (2005) Two simple learning classifier systems. In: Bull L, Kovacs T (eds) Foundations of learning classifier systems (Studies in fuzziness and soft computing), Lecture notes in artificial intelligence, vol 183, Springer, Berlin, pp 63–90

    Google Scholar 

  • Bull L, O'Hara T (2002) Accuracy-based neuro and neuro-fuzzy classifier systems. In: Langdon WB, Cantú-Paz E, Mathias K, Roy R, Davis R, Poli R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter MA, Schultz AC, Miller JF, Burke E, Jonoska N (eds) GECCO 2002: Proceedings of the genetic and evolutionary computation conference. Morgan Kaufmann, San Francisco, CA, pp 905–911

    Google Scholar 

  • Burke EK, Hyde MR, Kendall G, Ochoa G, Ozcan E, Woodward JR (2009) Exploring hyper-heuristic methodologies with genetic programming. In: Mumford C, Jain L (eds) Collaborative computational intelligence. Springer, Berlin

    Google Scholar 

  • Burke EK, Kendall G (2005) Introduction. In: Burke EK, Kendall G (eds) Search methodologies: introductory tutorials in optimization and decision support techniques. Springer, Berlin, pp 5–18

    Google Scholar 

  • Burke EK, Kendall G, Newall J, Hart E, Russ P, Schulenburg S (2003) Hyper-heuristics: an emerging direction in modern search technology. In: Glover F, Kochenberger G (eds) Handbook of meta-heuristics. Kluwer, Norwell, MA, pp 457–474

    Google Scholar 

  • Butz MV, Kovacs T, Lanzi PL, Wilson SW (2004b) Toward a theory of generalization and learning in XCS. IEEE Trans Evolut Comput 8(1):8–46

    Article  Google Scholar 

  • Butz MV (2002a) An algorithmic description of ACS2. In: Lanzi PL, Stolzmann W, Wilson SW (eds) Learning classifier systems: from foundations to applications, Lecture notes in artificial intelligence, vol 2321. Springer, Berlin, pp 211–229

    Chapter  Google Scholar 

  • Butz MV (2002b) Anticipatory learning classifier systems. Kluwer, Norwell, MA

    Book  MATH  Google Scholar 

  • Butz MV, Goldberg DV, Stolzmann W (2000a) Introducing a genetic generalization pressure to the anticipatory classifier system – part 1: theoretical approach. In: Whitley D, Goldberg D, Cantú-Paz E, Spector L, Parmee I, Beyer H-G (eds) Proceedings of genetic and evolutionary computation conference (GECCO 2000). Morgun Kaufmann, San Francisco, CA, pp 34–41

    Google Scholar 

  • Butz MV, Goldberg DE, Stolzmann W (2000b) Introducing a genetic generalization pressure to the anticipatory classifier system – part 2: performance analysis. In: Whitley D, Goldberg D, Cantú-Paz E, Spector L, Parmee I, Beyer H-G (eds) Proceedings of genetic and evolutionary computation conference (GECCO 2000). Morgun Kaufmann, San Francisco, CA, pp 42–49

    Google Scholar 

  • Butz MV, Wilson SW (2001) An algorithmic description of XCS. In: Lanzi PL, Stolzmann W, Wilson SW (eds) Advances in learning classifier systems, Lecture notes in artificial intelligence, vol 1996. Springer, Berlin, pp 253–272

    Chapter  Google Scholar 

  • Butz MV (2005) Kernel-based, ellipsoidal conditions in the real-valued XCS classifier system. In: Beyer HG et al. (eds) Proceedings of the genetic and evolutionary computation conference (GECCO 2005). ACM, New York, pp 1835–1842

    Chapter  Google Scholar 

  • Butz MV (2006) Rule-based evolutionary online learning systems: a principled approach to LCS analysis and design. Studies in fuzziness and soft computing. Springer, Berlin

    Google Scholar 

  • Butz MV, Goldberg DE, Lanzi PL (2004a) Bounding learning time in XCS. In Genetic and evolutionary computation (GECCO 2004), Lecture notes in computer science, vol 3103. Springer, Berlin, pp 739–750

    Google Scholar 

  • Butz MV, Goldberg DE, Lanzi PL (2005a) Computational complexity of the XCS classifier system. In: Bull L, Kovacs T (eds) Foundations of learning classifier systems, Studies in fuzziness and soft computing, Lecture notes in artificial intelligence, vol 183. Springer, Berlin, pp 91–126

    Google Scholar 

  • Butz MV, Goldberg DE, Lanzi PL (2005b) Gradient descent methods in learning classifier systems: improving XCS performance in multistep problems. IEEE Trans Evolut Comput 9(5):452–473

    Article  Google Scholar 

  • Butz MV, Goldberg DE, Lanzi PL, Sastry K (2007) Problem solution sustenance in XCS: Markov chain analysis of niche support distributions and the impact on computational complexity. GP and Evol Machines 8(1):5–37

    Google Scholar 

  • Butz MV, Lanzi PL, Wilson SW (2006) Hyper-ellipsoidal conditions in XCS: rotation, linear approximation, and solution structure. In: Cattolico M (ed) Proceedings of the genetic and evolutionary computation conference (GECCO 2006). ACM, New York, pp 1457–1464

    Chapter  Google Scholar 

  • Butz MV, Pelikan M (2006) Studying XCS/BOA learning in Boolean functions: structure encoding and random Boolean functions. In: Cattolico M et al. (eds) Genetic and evolutionary computation conference, GECCO 2006. ACM, New York, pp 1449–1456

    Chapter  Google Scholar 

  • Butz MV, Pelikan M, Llorà X, Goldberg DE (2005) Extracted global structure makes local building block processing effective in XCS. In: Beyer HG, O'Reilly UM (eds) Proceedings of the genetic and evolutionary computation conference, GECCO 2005. ACM, New York, pp 655–662

    Chapter  Google Scholar 

  • Butz MV, Pelikan M, Llorà X, Goldberg DE (2006) Automated global structure extraction for effective local building block processing in XCS. Evolut Comput 14(3):345–380

    Article  Google Scholar 

  • Butz MV, Stalph P, Lanzi PL (2008) Self-adaptive mutation in XCSF. In GECCO '08: Proceedings of the 10th annual conference on genetic and evolutionary computation. ACM, New York, pp 1365–1372

    Google Scholar 

  • Cantú-Paz E, Kamath C (2003) Inducing oblique decision trees with evolutionary algorithms. IEEE Trans Evolut Comput 7(1):54–68

    Article  Google Scholar 

  • Cantú-Paz E (2002) Feature subset selection by estimation of distribution algorithms. In: GECCO '02: Proceedings of the genetic and evolutionary computation conference. Morgan Kaufmann, San Francisco, CA, pp 303–310

    Google Scholar 

  • Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: ICML '06: Proceedings of the 23rd international conference on machine learning. ACM, New York, pp 161–168

    Google Scholar 

  • Casillas J, Carse B, Bull L (2007) Fuzzy-XCS: a Michigan genetic fuzzy system. IEEE Trans Fuzzy Syst 15:536–550

    Article  Google Scholar 

  • Castilloa PA, Merelo JJ, Arenas MG, Romero G (2007) Comparing evolutionary hybrid systems for design and optimization of multilayer perceptron structure along training parameters. Inform Sciences, 177(14):2884–2905

    Article  Google Scholar 

  • Chalmers D (1990) The evolution of learning: An experiment in genetic connectionism. In: Touretsky E (ed) Proceedings 1990 connectionist models summer school. Morgan Kaufmann, San Francisco, CA pp 81–90

    Google Scholar 

  • Chandra A, Yao X (2006a) Ensemble learning using multi-objective evolutionary algorithms. J Math Model Algorithm 5(4):417–445

    Article  MathSciNet  MATH  Google Scholar 

  • Chandra A, Yao X (2006b) Evolving hybrid ensembles of learning machines for better generalisation. Neurocomputing 69(7–9):686–700

    Article  Google Scholar 

  • Cho S, Cha K (1996) Evolution of neural net training set through addition of virtual samples. In: Proceedings of the 1996 IEEE international conference on evolutionary computation. IEEE Press, Washington DC, pp 685–688

    Google Scholar 

  • Cho S-B (1999) Pattern recognition with neural networks combined by genetic algorithm. Fuzzy Set Syst 103:339–347

    Article  Google Scholar 

  • Cho S-B, Park C (2004) Speciated GA for optimal ensemble classifiers in DNA microarray classification. In: Congress on evolutionary computation (CEC 2004), vol 1. pp 590–597

    Google Scholar 

  • Corcoran AL, Sen S (1994) Using real-valued genetic algorithms to evolve rule sets for classification. In: Proceedings of the IEEE conference on evolutionary computation. IEEE Press, Washington DC, pp 120–124

    Google Scholar 

  • Cordón O, Herrera F, Hoffmann F, Magdalena L (2001) Genetic fuzzy systems. World Scientific, Singapore

    MATH  Google Scholar 

  • Cribbs III HB, Smith RE (1996) Classifier system renaissance: new analogies, new directions. In: Koza JR, Goldberg DE, Fogel DB, Riolo RL (eds) Genetic programming 1996: proceedings of the first annual conference. MIT Press, Cambridge, MA, Stanford University, CA, USA, 28–31 July 1996. pp 547–552

    Google Scholar 

  • Dam HH, Abbass HA, Lokan C, Yao X (2008) Neural-based learning classifier systems. IEEE Trans Knowl Data Eng 20(1):26–39

    Article  Google Scholar 

  • Dam HH, Abbass HA, Lokan C (2005) DXCS: an XCS system for distributed data mining. In: Beyer HG, O'Reilly UM (eds) Genetic and evolutionary computation conference, GECCO 2005. pp 1883–1890

    Google Scholar 

  • Dasdan A, Oflazer K (1993) Genetic synthesis of unsupervised learning algorithms. Technical Report BU-CEIS-9306, Department of Computer Engineering and Information Science, Bilkent University, Ankara

    Google Scholar 

  • De Jong KA, Spears WM (1991) Learning concept classification rules using genetic algorithms. In: Proceedings of the twelfth international conference on artificial intelligence IJCAI-91, vol 2. Morgan Kaufmann, pp 651–656

    Google Scholar 

  • De Jong KA, Spears WM, Gordon DF (1993) Using genetic algorithms for concept learning. Mach Learn 3:161–188

    Article  Google Scholar 

  • Dietterich TG (1998) Machine-learning research: four current directions. AI Mag 18(4):97–136

    Google Scholar 

  • Divina F, Keijzer M, Marchiori E (2002) Non-universal suffrage selection operators favor population diversity in genetic algorithms. In: Benelearn 2002: proceedings of the 12th Belgian-Dutch conference on machine learning (Technical report UU-CS-2002-046). pp 23–30

    Google Scholar 

  • Divina F, Keijzer M, Marchiori E (2003) A method for handling numerical attributes in GA-based inductive concept learners. In: Proceedings of the genetic and evolutionary computation conference (GECCO-2003). Springer, Berlin, pp 898–908

    Google Scholar 

  • Divina F, Marchiori E (2002) Evolutionary concept learning. In: Langdon WB, Cantú-Paz E, Mathias K, Roy R, Davis D, Poli R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter MA, Schultz AC, Miller JF, Burke E, Jonoska N (eds) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann, San Francisco, CA, New York, 9–13 July 2002. pp 343–350

    Google Scholar 

  • Dixon PW, Corne D, Oates MJ (2002) A ruleset reduction algorithm for the XCS learning classifier system. In: Lanzi PL, Stolzmann W, Wilson SW (eds) Learning classifier systems, 5th international workshop (IWLCS 2002), Lecture notes in computer science, vol 2661. Springer, Berlin, pp 20–29

    Google Scholar 

  • Donnart J-Y (1998) Cognitive architecture and adaptive properties of an motivationally autonomous animat. PhD thesis, Université Pierre et Marie Curie. Paris, France

    Google Scholar 

  • Donnart J-Y, Meyer J-A (1996a) Hierarchical-map Building and Self-positioning with MonaLysa. Adapt Behav 5(1):29–74

    Article  Google Scholar 

  • Donnart J-Y, Meyer J-A (1996b) Learning reactive and planning rules in a motivationally autonomous animat. IEEE Trans Syst Man Cybern B Cybern 26(3):381–395

    Article  Google Scholar 

  • Dorigo M, Colombetti M (1998) Robot shaping: an experiment in behavior engineering. MIT Press/Bradford Books, Cambridge, MA

    Google Scholar 

  • Drugowitsch J, Barry A (2005) XCS with eligibility traces. In: Beyer H-G, O'Reilly U-M (eds) Genetic and evolutionary computation conference, GECCO 2005. ACM, New York, pp 1851–1858

    Chapter  Google Scholar 

  • Drugowitsch J (2008) Design and analysis of learning classifier systems: a probabilistic approach. Springer, Berlin

    MATH  Google Scholar 

  • Drugowitsch J, Barry A (2007) A formal framework and extensions for function approximation in learning classifier systems. Mach Learn 70(1):45–88

    Article  Google Scholar 

  • Edakunni NE, Kovacs T, Brown G, Marshall JAR, Chandra A (2009) Modelling UCS as a mixture of experts. In: Proceedings of the 2009 Genetic and Evolutionary Computation Conference (GECCO'09). ACM, pp 1187–1994

    Google Scholar 

  • Floreano D, Dürr P, Mattiussi C (2008) Neuroevolution: from architectures to learning. Evol Intell 1(1):47–62

    Article  Google Scholar 

  • Folino G, Pizzuti C, Spezzano G (2003) Ensemble techniques for parallel genetic programming based classifiers. In: Proceedings of the sixth European conference on genetic programming (EuroGP'03), Lecture notes in computer science, vol 2610. Springer, Berlin, pp 59–69

    Google Scholar 

  • Freitas AA (2002a) Data mining and knowledge discovery with evolutionary algorithms. Spinger, Berlin

    MATH  Google Scholar 

  • Freitas AA (2002b) A survey of evolutionary algorithms for data mining and knowledge discovery. In: Ghosh A, Tsutsui S (eds) Advances in evolutionary computation. Springer, Berlin, pp 819–845

    Google Scholar 

  • Freund Y, Schapire R (1996) Experiments with a new boosting algorithm. In: Proceedings of the international conference on machine learning (ICML'96), Bari, Italy, pp 148–156

    Google Scholar 

  • Freund Y, Schapire R (1999) A short introduction to boosting. J Jpn Soc Artif Intell 14(5):771–780

    Google Scholar 

  • Fürnkranz J (1998) Integrative windowing. J Artif Intell Res 8:129–164

    MATH  Google Scholar 

  • Gagné C, Sebag M, Schoenauer M, Tomassini M (2007) Ensemble learning for free with evolutionary algorithms? In: GECCO '07: Proceedings of the 9th annual conference on genetic and evolutionary computation. ACM, New York, pp 1782–1789

    Google Scholar 

  • Gathercole C, Ross P (1997) Tackling the Boolean even n parity problem with genetic programming and limited-error fitness. In: Koza JR, Deb K, Dorigo M, Fogel DB, Garzon M, Iba H, Riolo RL (eds) Genetic programming 1997: proceedings second annual conference. Morgan Kaufmann, San Francisco, CA, pp 119–127

    Google Scholar 

  • Gérard P, Sigaud O (2003) Designing efficient exploration with MACS: Modules and function approximation. In: Cantú-Paz E, Foster JA, Deb K, Davis D, Roy R, O'Reilly U-M, Beyer H-G, Standish R, Kendall G, Wilson S, Harman M, Wegener J, Dasgupta D, Potter MA, Schultz AC, Dowsland K, Jonoska N, Miller J (eds) Genetic and evolutionary computation – GECCO-2003, Lecture notes in computer science, vol 2724. Springer, Berlin, pp 1882–1893

    Chapter  Google Scholar 

  • Gerard P, Stolzmann W, Sigaud O (2002) YACS, a new learning classifier system using anticipation. J Soft Comput 6(3–4):216–228

    MATH  Google Scholar 

  • Geyer-Schulz A (1997) Fuzzy rule-based expert systems and genetic machine learning. Physica, Heidelberg

    Google Scholar 

  • Giordana A, Neri F (1995) Search-intensive concept induction. Evolut Comput 3:375–416

    Article  Google Scholar 

  • Giordana A, Saitta L (1994) Learning disjunctive concepts by means of genetic algorithms. In: Proceedings of the international conference on machine learning, Brunswick, NJ, pp 96–104

    Google Scholar 

  • Giraldez R, Aguilar-Ruiz J, Riquelme J (2003) Natural coding: a more efficient representation for evolutionary learning. In: Proceedings of the genetic and evolutionary computation conference (GECCO-2003). Springer, Berlin, pp 979–990

    Google Scholar 

  • Giraud-Carrier C, Keller J (2002) Meta-learning. In: Meij J (ed) Dealing with the data flood. STT/Beweton, Hague, The Netherlands

    Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  • Goldberg DE, Horn J, Deb K (1992) What makes a problem hard for a classifier system? In: Collected abstracts for the first international workshop on learning classifier system (IWLCS-92). (Also technical report 92007 Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign). Available from ENCORE (ftp://ftp.krl.caltech.edu/pub/EC/Welcome.html) in the section on Classifier Systems

  • Greene DP, Smith SF (1993) Competition-based induction of decision models from examples. Mach Learn 13:229–257

    Article  Google Scholar 

  • Greene DP, Smith SF (1994) Using coverage as a model building constraint in learning classifier systems. Evolut Comput 2(1):67–91

    Article  Google Scholar 

  • Greene DP, Smith SF (1987) A genetic system for learning models of consumer choice. In: Proceedings of the second international conference on genetic algorithms and their applications. Morgan Kaufmann, San Francisco, CA, pp 217–223

    Google Scholar 

  • Greenyer A (2000) The use of a learning classifier system JXCS. In: van der Putten P, van Someren M (eds) CoIL challenge 2000: the insurance company case. Leiden Institute of Advanced Computer Science, June 2000. Technical report 2000–09

    Google Scholar 

  • Gruau F (1995) Automatic definition of modular neural networks. Adapt Behav 3(2):151–183

    Article  Google Scholar 

  • Hanebeck D, Schmidt K (1996) Genetic optimization of fuzzy networks. Fuzzy set syst 79:59–68

    Article  MathSciNet  Google Scholar 

  • Hansen LK, Salamon P (1990) Neural network ensembles. IEEE Trans Pattern Anal Mach Intell 12(10): 993–1001

    Article  Google Scholar 

  • Hart WE, Krasnogor N, Smith JE (eds) (2004) Special issue on memetic algorithms, evolutionary computation, vol 12, 3

    Google Scholar 

  • Hart WE, Krasnogor N, Smith JE (eds) (2005) Recent advances in memetic algorithms, Studies in fuzziness and soft computing, vol 166. Springer, Berlin

    Google Scholar 

  • He L, Wang KJ, Jin HZ, Li GB, Gao XZ (1999) The combination and prospects of neural networks, fuzzy logic and genetic algorithms. In: IEEE midnight-sun workshop on soft computing methods in industrial applications. IEEE, Washington, DC, pp 52–57

    Google Scholar 

  • Heitkötter J, Beasley D (2001) The hitch-hiker's guide to evolutionary computation (FAQ for comp.ai.genetic). Accessed 28/2/09. http://www.aip.de/∼ast/EvolCompFAQ/

  • Hekanaho J (1995) Symbiosis in multimodal concept learning. In: Proceedings of the 1995 international conference on machine learning (ICML'95). Morgan Kaufmann, San Francisco, pp 278–285

    Google Scholar 

  • Herrera F (2008) Genetic fuzzy systems: taxonomy, current research trends and prospects. Evolut Intell 1(1):27–46

    Article  MathSciNet  Google Scholar 

  • Holland JH (1976) Adaptation. In: Rosen R, Snell FM (eds) Progress in theoretical biology. Plenum, New York

    Google Scholar 

  • Holland JH (1986) Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems. In: Mitchell T, Michalski R, Carbonell J (eds) Machine learning, an artificial intelligence approach. vol. II, chap. 20. Morgan Kaufmann, San Francisco, CA, pp 593–623

    Google Scholar 

  • Holland JH, Booker LB, Colombetti M, Dorigo M, Goldberg DE, Forrest S, Riolo RL, Smith RE, Lanzi PL, Stolzmann W, Wilson SW (2000) What is a learning classifier system? In: Lanzi PL, Stolzmann W, Wilson SW (eds) Learning classifier systems: from foundations to application, Lecture notes in artificial intelligence, vol 1813. Springer, Berlin, pp 3–32

    Chapter  Google Scholar 

  • Holland JH, Holyoak KJ, Nisbett RE, Thagard PR (1986) Induction: processes of inference, learning, and discovery. MIT Press, Cambridge, MA

    Google Scholar 

  • Holland JH, Reitman JS (1978) Cognitive systems based on adaptive algorithms. In: Waterman DA, Hayes-Roth F (eds) Pattern-directed Inference Systems. Academic Press, New York. Reprinted in: Evolutionary Computation. The Fossil Record. Fogel DB (ed) (1998) IEEE Press, Washington DC. ISBN: 0-7803-3481-7

    Google Scholar 

  • Homaifar A, Mccormick E (1995) Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms. IEEE Trans Fuzzy Syst, 3(2):129–139

    Article  Google Scholar 

  • Howard D, Bull L (2008) On the effects of node duplication and connection-orientated constructivism in neural XCSF. In: Keijzer M et al. (eds) GECCO-2008: proceedings of the genetic and evolutionary computation conference. ACM, New York, pp 1977–1984

    Chapter  Google Scholar 

  • Howard D, Bull L, Lanzi PL (2008) Self-adaptive constructivism in neural XCS and XCSF. In: Keijzer M et al. (eds) GECCO-2008: proceedings of the genetic and evolutionary computation conference. ACM, New York, pp 1389–1396

    Chapter  Google Scholar 

  • Hu Y-J (1998) A genetic programming approach to constructive induction. In: Genetic programming 1998: proceedings of the 3rd annual conference. Morgan Kaufmann, San Francisco, CA, pp 146–151

    Google Scholar 

  • Hurst J, Bull L (2003) Self-adaptation in classifier system controllers. Artifi Life Robot 5(2):109–119

    Article  Google Scholar 

  • Hurst J, Bull L (2004) A self-adaptive neural learning classifier system with constructivism for mobile robot control. In: Yao X et al. (eds) Parallel problem solving from nature (PPSN VIII), Lecture notes in computer science, vol 3242. Springer, Berlin, pp 942–951

    Chapter  Google Scholar 

  • Husbands P, Harvey I, Cliff D, Miller G (1994) The use of genetic algorithms for the development of sensorimotor control systems. In: Gaussier P, Nicoud J-D (eds) From perception to action. IEEE Press, Washington DC, pp 110–121

    Google Scholar 

  • Iba H (1999) Bagging, boosting and bloating in genetic programming. In: Proceedings of the genetic and evolutionary computation conference (GECCO'99). Morgan Kaufmann, San Francisco, CA, pp 1053–1060

    Google Scholar 

  • IEEE (2000) Proceedings of the 2000 congress on evolutionary computation (CEC'00). IEEE Press, Washington DC

    Google Scholar 

  • Ishibuchi H, Nakashima T (2000) Multi-objective pattern and feature selection by a genetic algorithm. In: Proceedings of the 2000 genetic and evolutionary computation conference (GECCO'2000). Morgan Kaufmann, San Francisco, CA, pp 1069–1076

    Google Scholar 

  • Islam MM, Yao X, Murase K (2003) A constructive algorithm for training cooperative neural network ensembles. IEEE Trans Neural Networ 14:820–834

    Article  Google Scholar 

  • Jain A, Zongker D (1997) Feature selection: evaluation, application and small sample performance. IEEE Trans. Pattern Anal Mach Intell 19(2):153–158

    Article  Google Scholar 

  • Janikow CZ (1991) Inductive learning of decision rules in attribute-based examples: a knowledge-intensive genetic algorithm approach. PhD thesis, University of North Carolina

    Google Scholar 

  • Janikow CZ (1993) A knowledge-intensive genetic algorithm for supervised learning. Mach Learn 13:189–228

    Article  Google Scholar 

  • Jin Y, Sendhoff B (2004) Reducing fitness evaluations using clustering techniques and neural network ensembles. In: Genetic and evolutionary computation conference (GECCO–2004), Lecture notes in computer science, vol 3102. Springer, Berlin, pp 688–699

    Google Scholar 

  • John G, Kohavi R, Phleger K (1994) Irrelevant features and the feature subset problem. In: Proceedings of the 11th international conference on machine learning. Morgan Kaufmann, San Francisco, CA, pp 121–129

    Google Scholar 

  • Juan Liu J, Tin-Yau Kwok J (2000) An extended genetic rule induction algorithm. In: Proceedings of the 2000 congress on evolutionary computation (CEC'00). IEEE Press, Washington DC, pp 458–463

    Google Scholar 

  • Kelly JD Jr, Davis L (1991) Hybridizing the genetic algorithm and the k nearest neighbors classification algorithm. In: Booker LB, Belew RK (eds) Proceedings of the 4th international conference on genetic algorithms (ICGA91). Morgan Kaufmann, San Francisco, CA, pp 377–383

    Google Scholar 

  • Karr C (1991) Genetic algorithms for fuzzy controllers. AI Expert 6(2):26–33

    Google Scholar 

  • Kasabov N (2007) Evolving connectionist systems: the knowledge engineering approach. Springer, Berlin

    MATH  Google Scholar 

  • Keijzer M, Babovic V (2000) Genetic programming, ensemble methods, and the bias/variance/tradeoff – introductory investigation. In: Proceedings of the European conference on genetic programming (EuroGP'00), Lecture notes in computer science, vol 1802. Springer, Berlin, pp 76–90

    Google Scholar 

  • Kitano H (1990) Designing neural networks by genetic algorithms using graph generation system. J Complex Syst 4:461–476

    MATH  Google Scholar 

  • Kolman E, Margaliot M (2009) Knowledge-based neurocomputing: a fuzzy logic approach, Studies in fuzziness and soft computing, vol 234. Springer, Berlin

    Book  Google Scholar 

  • Kovacs T (1996) Evolving optimal populations with XCS classifier systems. Master's thesis, University of Birmingham, Birmingham, UK

    Google Scholar 

  • Kovacs T (1997) XCS classifier system reliably evolves accurate, complete, and minimal representations for Boolean functions. In: Chawdhry PK, Roy R, Pant RK (eds) Soft computing in engineering design and manufacturing. Springer, London, pp 59–68 ftp://ftp.cs.bham.ac.uk/pub/authors/T.Kovacs/index.html

  • Kovacs T (2000) Strength or accuracy? Fitness calculation in learning classifier systems. In: Lanzi PL, Stolzmann W, Wilson SW (eds) Learning classifier systems: from foundations to applications, Lecture notes in artificial intelligence, vol 1813. Springer, Berlin, pp 143–160

    Chapter  Google Scholar 

  • Kovacs T (2004) Strength or accuracy: credit assignment in learning classifier systems. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kovacs T (2009) A learning classifier systems bibliography. Department of Computer Science, University of Bristol. http://www.cs.bris.ac.uk/∼kovacs/lcs/search.html

  • Kovacs T, Kerber M (2001) What makes a problem hard for XCS? In: Lanzi PL, Stolzmann W, Wilson SW (eds) Advances in learning classifier systems, Lecture notes in artificial intelligence, vol 1996. Springer, Berlin, pp 80–99

    Chapter  Google Scholar 

  • Kovacs T, Kerber M (2004) High classification accuracy does not imply effective genetic search. In: Deb K et al. (eds) Proceedings of the 2004 genetic and evolutionary computation conference (GECCO), Lecture notes in computer science, vol 3102. Springer, Berlin, pp 785–796

    Google Scholar 

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Koza JR (1994) Genetic Programming II. MIT Press

    Google Scholar 

  • Krasnogor N (2002) Studies on the theory and design space of memetic algorithms. PhD thesis, University of the West of England

    Google Scholar 

  • Krasnogor N, Smith JE (2005) A tutorial for competent memetic algorithms: model, taxonomy and design issues. IEEE Trans Evolut Comput 9(5):474–488

    Article  Google Scholar 

  • Krasnogor N (2004) Self-generating metaheuristics in bioinformatics: the protein structure comparison case. GP and Evol Machines 5(2):181–201

    Google Scholar 

  • Krasnogor N, Gustafson S (2004) A study on the use of self-generation in memetic algorithms. Natural Comput 3(1):53–76

    Article  MathSciNet  MATH  Google Scholar 

  • Krawiec K (2002) Genetic programming-based construction of features for machine learning and knowledge discovery tasks. GP and Evol Machines 3(4):329–343

    MATH  Google Scholar 

  • Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation and active learning. NIPS 7:231–238

    Google Scholar 

  • Kudo M, Skalansky J (2000) Comparison of algorithms that select features for pattern classifiers. Pattern Recogn 33:25–41

    Article  Google Scholar 

  • Kuncheva LI (2004) Combining pattern classifiers: methods and algorithms. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Kushchu I (2002) An evaluation of evolutionary generalization in genetic programming. Artif Intell Rev 18(1):3–14

    Article  MATH  Google Scholar 

  • Lam L, Suen CY (1995) Optimal combination of pattern classifiers. Pattern Recogn Lett 16:945–954 See Kuncheva (2004a) p.167

    Article  Google Scholar 

  • Landau S, Sigaud O, Schoenauer M (2005) ATNoSFERES revisited. In: Proceedings of the genetic and evolutionary computation conference GECCO-2005. ACM, New York, pp 1867–1874

    Google Scholar 

  • Langdon W, Gustafson S, Koza J (2009) The genetic programming bibliography. http://www.cs.bham.ac.uk/∼wbl/biblio/

  • Lanzi PL (1999a) Extending the representation of classifier conditions, part I: from binary to messy coding. In: Banzhaf W et al. (eds) GECCO-99: Proceedings of the genetic and evolutionary computation conference. Morgan Kaufmann, San Francisco, CA, pp 337–344

    Google Scholar 

  • Lanzi PL (1999b) Extending the representation of classifier conditions part II: from messy coding to S-expressions. In: Banzhaf W et al. (eds) GECCO-99: Proceedings of the genetic and evolutionary computation conference. Morgan Kaufmann, San Francisco, CA, pp 345–352

    Google Scholar 

  • Lanzi PL (2002a) Learning classifier systems from a reinforcement learning perspective. J Soft Comput 6(3–4):162–170

    Article  MATH  Google Scholar 

  • Lanzi PL (2001) Mining interesting knowledge from data with the XCS classifier system. In: Spector L, Goodman ED, Wu A, Langdon WB, Voigt H-M, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon MH, Burke E (eds) Proceedings of the genetic and evolutionary computation conference (GECCO-2001). Morgan Kaufmann, San Francisco, CA, pp 958–965

    Google Scholar 

  • Lanzi PL (2008) Learning classifier systems: then and now. Evolut Intell 1(1):63–82

    Article  Google Scholar 

  • Lanzi PL, Loiacono D, Wilson SW, Goldberg DE (2006a) Classifier prediction based on tile coding. In: Genetic and evolutionary computation – GECCO-2006. ACM, New York, pp 1497–1504

    Google Scholar 

  • Lanzi PL, Loiacono D, Wilson SW, Goldberg DE (2006b) Prediction update algorithms for XCSF: RLS, Kalman filter and gain adaptation. In: Genetic and Evolutionary Computation – GECCO-2006. ACM, New York, pp 1505–1512

    Google Scholar 

  • Lanzi PL, Loiacono D, Zanini M (2008) Evolving classifiers ensembles with heterogeneous predictors. In: Bacardit J, Bernadó-Mansilla E, Butz M, Kovacs T, Llorà X, Takadama K (eds) Learning classifier systems. 10th and 11th international workshops (2006–2007), Lecture notes in computer science, vol 4998. Springer, Berlin, pp 218–234

    Google Scholar 

  • Lanzi PL, Riolo RL (2000) A roadmap to the last decade of learning classifier system research (from 1989 to 1999). In: Lanzi PL, Stolzmann W, Wilson SW (eds) Learning classifier systems: from foundations to applications, Lecture notes in artificial intelligence, vol 1813. Springer, Berlin, pp 33–62

    Chapter  Google Scholar 

  • Lanzi PL, Stolzmann W, Wilson SW (eds) (2000) Learning classifier systems: from foundations to applications, Lecture notes in artificial intelligence, vol 1813. Springer, Berlin

    Google Scholar 

  • Lanzi PL, Stolzmann W, Wilson SW (eds) (2001) Advances in learning classifier systems, Lecture notes in artificial intelligence, vol 1996. Springer, Berlin

    Google Scholar 

  • Lanzi PL, Stolzmann W, Wilson SW (eds) (2002) Advances in learning classifier systems, Lecture notes in artificial intelligence, vol 2321. Springer, Berlin

    MATH  Google Scholar 

  • Lanzi PL, Butz MV, Goldberg DE (2007) Empirical analysis of generalization and learning in XCS with gradient descent. In: Lipson H (ed) Proceedings of the Genetic and evolutionary computation conference, GECCO 2007, vol 2. ACM, New York, pp 1814–1821

    Chapter  Google Scholar 

  • Lanzi PL, Loiacono D (2006) Standard and averaging reinforcement learning in XCS. In: Cattolico M (ed) Proceedings of the 8th annual conference on genetic and evolutionary computation, GECCO 2006. ACM, New York, pp 1480–1496

    Google Scholar 

  • Lanzi PL, Loiacono D (2007) Classifier systems that compute action mappings. In: Lipson H (ed) Proceedings of the Genetic and evolutionary computation conference, GECCO 2007. ACM, New York, pp 1822–1829

    Chapter  Google Scholar 

  • Lanzi PL, Wilson SW (2006) Using convex hulls to represent classifier conditions. In: Cattolico M (ed) Proceedings of the genetic and evolutionary computation conference (GECCO 2006). ACM, New York, pp 1481–1488

    Chapter  Google Scholar 

  • Liangjie Z, Yanda L (1996) A new global optimizing algorithm for fuzzy neural networks. Int J Elect 80(3):393–403

    Article  Google Scholar 

  • Linkens DA, Nyongesa HO (1996) Learning systems in intelligent control: an appraisal of fuzzy, neural and genetic algorithm control applications. IEE Proc Contr Theo Appl 143(4):367–386

    Article  MATH  Google Scholar 

  • Liu Y, Yao X (1999) Ensemble learning via negative correlation. Neural Networ 12:1399–1404

    Article  Google Scholar 

  • Liu Y, Yao X, Higuchi T (2000) Evolutionary ensembles with negative correlation learning. IEEE Trans Evolut Comput 4(4):380–387

    Article  Google Scholar 

  • Llorà X (2002) Genetic based machine learning using fine-grained parallelism for data mining. PhD thesis, Enginyeria i Arquitectura La Salle. Ramon Llull University

    Google Scholar 

  • Llorà X, Garrell JM (2001) Knowledge-independent data mining with fine-grained parallel evolutionary algorithms. In: Spector L, Goodman ED, Wu A, Langdon WB, Voigt H-M, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon MH, Burke E (eds) Proceedings of the genetic and evolutionary computation conference (GECCO'2001). Morgan Kaufmann, San Francisco, CA, pp 461–468

    Google Scholar 

  • Llorà X, Sastry K, Goldberg DE (2005a) Binary rule encoding schemes: a study using the compact classifier system. In: Rothlauf F (ed) Proceedings of the 2005 conference on genetic and evolutionary computation GECCO '05. ACM Press, New York, pp 88–89

    Chapter  Google Scholar 

  • Llorà X, Sastry K, Goldberg DE (2005b) The compact classifier system: scalability analysis and first results. In: Rothlauf F (ed) Proceedings of the IEEE congress on evolutionary computation, CEC 2005. IEEE, Press, Washington, DC, pp 596–603

    Chapter  Google Scholar 

  • Llorà X, Wilson SW (2004) Mixed decision trees: minimizing knowledge representation bias in LCS. In: Kalyanmoy Deb et al. (eds) Proceedings of the genetic and evolutionary computation conference (GECCO-2004), Lecture notes in computer science, Springer, Berlin, pp 797–809

    Google Scholar 

  • Loiacono D, Marelli A, Lanzi PL (2007) Support vector regression for classifier prediction. In: GECCO '07: Proceedings of the 9th annual conference on genetic and evolutionary computation. ACM, Berlin, pp 1806–1813

    Google Scholar 

  • Marmelstein RE, Lamont GB (1998) Pattern classification using a hybrid genetic algorithm – decision tree approach. In: Genetic programming 1998: proceedings of the 3rd annual conference (GP'98). Morgan Kaufmann, San Francisco, CA, pp 223–231

    Google Scholar 

  • Marshall JAR, Kovacs T (2006) A representational ecology for learning classifier systems. In: Keijzer M et al. (ed) Proceedings of the 2006 genetic and evolutionary computation conference (GECCO 2006). ACM, New York, pp 1529–1536

    Google Scholar 

  • Martin-Bautista MJ, Vila M-A (1999) A survey of genetic feature selection in mining issues. In: Proceedings of the congress on evolutionary computation (CEC'99). IEEE Press, Washington, DC, pp 1314–1321

    Google Scholar 

  • Meir R, Rätsch G (2003) An introduction to boosting and leveraging. In: Advanced lectures on machine learning. Springer, Berlin, pp 118–183

    Google Scholar 

  • Mellor D (2005a) A first order logic classifier system. In: Rothlauf F (ed), GECCO '05: Proceedings of the 2005 conference on genetic and evolutionary computation. ACM, New York, pp 1819–1826

    Chapter  Google Scholar 

  • Mellor D (2005b) Policy transfer with a relational learning classifier system. In: GECCO Workshops 2005. ACM, New York, pp 82–84

    Google Scholar 

  • Mellor D (2008) A learning classifier system approach to relational reinforcement learning. In: Bacardit J, Bernadó-Mansilla E, Butz M, Kovacs T, Llorà X, Takadama K (eds) Learning classifier systems. 10th and 11th international workshops (2006–2007), Lecture notes in computer science, vol 4998. Springer, New York, pp 169–188

    Google Scholar 

  • Michalski RS, Mozetic I, Hong J, Lavrac N (1986) The AQ15 inductive learning system: an overview and experiments. Technical Report UIUCDCS-R-86-1260, University of Illinois

    Google Scholar 

  • Miller GF, Todd PM, Hegde SU (1989) Designing neural networks using genetic algorithms. In: Schaffer JD (ed) Proceedings of the 3rd international conference genetic algorithms and their applications, Morgan Kaufmann, San Francisco, CA, pp 379–384

    Google Scholar 

  • Mitra S, Hayashi Y (2000) Neurofuzzy rule generation: survey in soft computing framework. IEEE Trans Neural Networ 11(3):748–768

    Article  Google Scholar 

  • Morimoto T, Suzuki J, Hashimoto Y (1997) Optimization of a fuzzy controller for fruit storage using neural networks and genetic algorithms. Eng Appl Artif Intell 10(5):453–461

    Article  Google Scholar 

  • Nolfi S, Miglino O, Parisi D (1994) Phenotypic plasticity in evolving neural networks. In: Gaussier P, Nicoud J-D (eds) From perception to action. IEEE Press, Washington, DC, pp 146–157

    Google Scholar 

  • O'Hara T, Bull L (2005) A memetic accuracy-based neural learning classifier system. In: Proceedings of the IEEE congress on evolutionary computation (CEC 2005). IEEE Press, Washington, DC, pp 2040–2045

    Google Scholar 

  • Ong Y-S, Krasnogor N, Ishibuchi H (eds) (2007) Special issue on memetic algorithms, IEEE Transactions on Systems, Man and Cybernetics - Part B

    Google Scholar 

  • Ong Y-S, Lim M-H, Neri F, Ishibuchi H (2009) Emerging trends in soft computing - memetic algorithms, Special Issue of Soft Computing. vol 13, 8–9

    Google Scholar 

  • Ong YS, Lim MH, Zhu N, Wong KW (2006) Classification of adaptive memetic algorithms: A comparative study. IEEE Trans Syst Man Cybern B 36(1):141–152

    Article  Google Scholar 

  • Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. J Artif Intell Res 11:169–198

    MATH  Google Scholar 

  • Opitz DW, Shavlik JW (1996) Generating accurate and diverse members of a neural-network ensemble. Advances in neural information processing systems, vol 8. Morgan Kaufmann, pp 535–541

    Google Scholar 

  • Orriols-Puig A, Bernadó-Mansilla E (2006) Bounding XCS's parameters for unbalanced datasets. In: Keijzer M et al. (eds) Proceedings of the 2006 genetic and evolutionary computation conference (GECCO 2006). ACM, New York, pp 1561–1568

    Google Scholar 

  • Orriols-Puig A, Casillas J, Bernadò-Mansilla E (2007a) Fuzzy-UCS: preliminary results. In: Lipson H (ed) Proceedings of the genetic and evolutionary computation conference, GECCO 2007. ACM, New York, pp 2871–2874

    Chapter  Google Scholar 

  • Orriols-Puig A, Goldberg DE, Sastry K, Bernadó-Mansilla E (2007b) Modeling XCS in class imbalances: population size and parameter settings. In: Lipson H et al. (eds) Genetic and evolutionary computation conference, GECCO 2007. ACM, New York, pp 1838–1845

    Chapter  Google Scholar 

  • Orriols-Puig A, Goldberg DE, Sastry K, Bernadó-Mansilla E (2007c) Modeling XCS in class imbalances: population size and parameter settings. In: Lipson H (eds) Proceedings of the genetic and evolutionary computation conference, GECCO 2007. ACM, New York, pp 1838–1845

    Chapter  Google Scholar 

  • Orriols-Puig A, Sastry K, Lanzi PL, Goldberg DE, Bernadò-Mansilla E (2007d) Modeling selection pressure in XCS for proportionate and tournament selection. In: Lipson H (ed) Proceedings of the genetic and evolutionary computation conference, GECCO 2007. ACM, New York, pp 1846–1853

    Chapter  Google Scholar 

  • Orriols-Puig A, Bernadó-Mansilla E (2008) Revisiting UCS: description, fitness sharing, and comparison with XCS. In: Bacardit J, Bernadó-Mansilla E, Butz M, Kovacs T, Llorà X, Takadama K (eds) Learning classifier systems. 10th and 11th international workshops (2006–2007), Lecture notes in computer science, vol 4998. Springer, Berlin, pp 96–111

    Google Scholar 

  • Orriols-Puig A, Casillas J, Bernadó-Mansilla E (2008a) Evolving fuzzy rules with UCS: preliminary results. In: Bacardit J, Bernadó-Mansilla E, Butz M, Kovacs T, Llorà X, Takadama K (eds) Learning classifier systems. 10th and 11th international workshops (2006–2007), Lecture notes in computer science, vol 4998. Springer, Berlin, pp 57–76

    Google Scholar 

  • Orriols-Puig A, Casillas J, Bernadó-Mansilla E (2008b) Genetic-based machine learning systems are competitive for pattern recognition. Evolut Intell 1(3):209–232

    Article  Google Scholar 

  • Pal S, Bhandari D (1994) Genetic algorithms with fuzzy fitness function for object extraction using cellular networks. Fuzzy Set Syst 65(2–3):129–139

    Article  Google Scholar 

  • Pappa GL, Freitas AA (2010) Automating the design of data mining algorithms. An evolutionary computation approach. Natural computing series. Springer

    Google Scholar 

  • Paris G, Robilliard D, Fonlupt C (2001) Applying boosting techniques to genetic programming. In: Artificial evolution 2001, Lecture notes in computer science, vol 2310. Springer, Berlin, pp 267–278

    Google Scholar 

  • Pereira FB, Costa E (2001) Understanding the role of learning in the evolution of busy beaver: a comparison between the Baldwin effect and Lamarckian strategy. In: Proceedings of the genetic and evolutionary computation conference (GECCO–2001). Morgan Kaufmann, San Francisco, pp 884–891

    Google Scholar 

  • Perneel C, Themlin J-M (1995) Optimization of fuzzy expert systems using genetic algorithms and neural networks. IEEE Trans Fuzzy Syst 3(3):301–312

    Article  Google Scholar 

  • Pham DT, Karaboga D (1991) Optimum design of fuzzy logic controllers using genetic algorithms. J Syst Eng 1:114–118

    Google Scholar 

  • Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic programming, freely available at http://www.gp-field-guide.org.uk.lulu.com

  • Punch WF, Goodman ED, Pei M, Chia-Shun L, Hovland P, Enbody R (1993) Further research on feature selection and classification using genetic algorithms. In: Forrest S (ed) Proceedings of the 5th international conference on genetic algorithms (ICGA93). Morgan Kaufmann, San Francisco, CA, pp 557–564

    Google Scholar 

  • Radi A, Poli R (2003) Discovering efficient learning rules for feedforward neural networks using genetic programming. In: Abraham A, Jain L, Kacprzyk J (eds) Recent advances in intelligent paradigms and applications. Springer, Berlin, pp 133–159

    Google Scholar 

  • Raymer ML, Punch WF, Goodman ED, Kuhn LA, Jain AK (2000) Dimensionality reduction using genetic algorithms. IEEE Trans Evolut Comput 4(2):164–171

    Article  Google Scholar 

  • Reeves CR, Rowe JE (2002) Genetic algorithms – principles and perspectives. A guide to GA theory. Kluwer, Norwell

    Google Scholar 

  • Riolo RL (1987) Bucket brigade performance: I. long sequences of classifiers. In: Grefenstette JJ (eds) Proceedings of the 2nd international conference on genetic algorithms (ICGA'87), Lawrence Erlbaum Associates, Cambridge, MA, pp 184–195

    Google Scholar 

  • Rivest RL (1987) Learning decision lists. Mach Learn 2(3):229–246

    Google Scholar 

  • Romaniuk S (1994) Towards minimal network architectures with evolutionary growth networks. In: Proceedings of the 1993 international joint conference on neural networks, vol 3. IEEE Press, Washington, DC, pp 1710–1713

    Google Scholar 

  • Rouwhorst SE, Engelbrecht AP (2000) Searching the forest: using decision trees as building blocks for evolutionary search in classification databases. In: Proceedings of the 2000 congress on evolutionary computation (CEC00). IEEE Press, Washington, DC, pp 633–638

    Google Scholar 

  • Rozenberg G, Bäck T, Kok J (eds) (2012) Handbook of natural computing. Springer, Berlin

    MATH  Google Scholar 

  • Ruta D, Gabrys B (2001) Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting. In: Kittler J, Roli F (eds) Proceedings of the 2nd international workshop on multiple classifier systems, Lecture notes in computer science, vol 2096. Springer, Berlin, pp 399–408. See Kuncheva (2004a) p.321

    Chapter  Google Scholar 

  • Sánchez L, Couso I (2007) Advocating the use of imprecisely observed data in genetic fuzzy systems. IEEE Trans Fuzzy Syst 15(4):551–562

    Article  Google Scholar 

  • Sasaki T, Tokoro M (1997) Adaptation toward changing environments: why Darwinian in nature? In: Husbands P, Harvey I (eds) Proceedings of the 4th European conference on artificial life. MIT Press, Cambridge, MA, pp 145–153

    Google Scholar 

  • Saxon S, Barry A (2000) XCS and the Monk's problems. In: Lanzi PL, Stolzmann W, Wilson SW (eds) Learning classifier systems: from foundations to applications, Lecture notes in artificial intelligence, vol 1813. Springer, Berlin, pp 223–242

    Chapter  Google Scholar 

  • Schaffer C (1994) A conservation law for generalization performance. In: Hirsh H, Cohen WW (eds) Machine learning: proceedings of the eleventh international conference. Morgan Kaufmann, San Francisco, CA, pp 259–265

    Google Scholar 

  • Schaffer JD (ed) (1989) Proceedings of the 3rd international conference on genetic algorithms (ICGA-89), George Mason University, June 1989. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  • Schmidhuber J (1987) Evolutionary principles in self-referential learning. (On learning how to learn: The meta-meta-… hook.). PhD thesis, Technische Universität München, Germany

    Google Scholar 

  • Schuurmans D, Schaeffer J (1989) Representational difficulties with classifier systems. In: Schaffer JD (ed) Proceedings of the 3rd international conference on genetic algorithms (ICGA-89). Morgan Kaufmann, San Francisco, CA, pp 328–333

    Google Scholar 

  • Sharkey AJC (1996) On combining artificial neural nets. Connection Sci 8(3–4):299–313

    Article  Google Scholar 

  • Sharpe PK, Glover RP (1999) Efficient GA based techniques for classification. Appl Intell 11:277–284

    Article  Google Scholar 

  • Sirlantzis K, Fairhurst MC, Hoque MS (2001) Genetic algorithms for multi-classifier system configuration: a case study in character recognition. In: Kittler J, Roli F (eds) Proceedings of the 2nd international workshop on multiple classifier systems, Lecture notes in computer science, vol 2096. Springer, Berlin, pp 99–108. See Kuncheva (2004a) p.321

    Chapter  Google Scholar 

  • Smith JE (2007) Coevolving memetic algorithms: a review and progress report. IEEE Trans Syst Man Cybern B Cybern 37(1):6–17

    Article  Google Scholar 

  • Smith MG, Bull L (2005) Genetic programming with a genetic algorithm for feature construction and selection. GP and Evol Machines 6(3):265–281

    Google Scholar 

  • Smith RE (1992) A report on the first international workshop on learning classifier systems (IWLCS-92). NASA Johnson Space Center, Houston, Texas, Oct. 6–9. ftp://lumpi.informatik.uni-dortmund.de/pub/LCS/papers/lcs92.ps.gz or from ENCORE, The Electronic Appendix to the Hitch-Hiker's Guide to Evolutionary Computation (ftp://ftp.krl.caltech.edu/pub/EC/Welcome.html) in the section on Classifier Systems

  • Smith RE (1994) Memory exploitation in learning classifier systems. Evolut Comput 2(3):199–220

    Article  Google Scholar 

  • Smith RE, Cribbs HB (1994) Is a learning classifier system a type of neural network? Evolut Comput 2(1):19–36

    Article  Google Scholar 

  • Smith RE, Goldberg DE (1991) Variable default hierarchy separation in a classifier system. In: Rawlins GJE (ed) Proceedings of the first workshop on foundations of genetic algorithms. Morgan Kaufmann, San Mateo, pp 148–170

    Google Scholar 

  • Smith RE, Cribbs III HB (1997) Combined biological paradigms. Robot Auton Syst 22(1):65–74

    Article  Google Scholar 

  • Song D, Heywood MI, Zincir-Heywood AN (2005) Training genetic programming on half a million patterns: an example from anomaly detection. IEEE Trans Evolut Comput 9(3):225–239

    Article  Google Scholar 

  • Srinivas N, Deb K (1994) Multi-objective function optimization using non-dominated sorting genetic algorithm. Evolut Comput 2(3):221–248

    Article  Google Scholar 

  • Stagge P (1998) Averaging efficiently in the presence of noise. In: Parallel problem solving from nature, vol 5. pp 188–197

    Google Scholar 

  • Stolzmann W (1996) Learning classifier systems using the cognitive mechanism of anticipatory behavioral control, detailed version. In: Proceedings of the first European workshop on cognitive modelling. Berlin, TU, pp 82–89

    Google Scholar 

  • Stone C, Bull L (2003) For real! XCS with continuous-valued inputs. Evolut Comput 11(3):298–336

    Article  Google Scholar 

  • Storn R, Price K (1996) Minimizing the real functions of the ICEC'96 contest by differential evolution. In: Proceedings of the IEEE international conference Evolutionary Computation. IEEE Press, Washington, DC, pp 842–844

    Google Scholar 

  • Stout M, Bacardit J, Hirst JD, Krasnogor N (2008) Prediction of recursive convex hull class assignment for protein residues. Bioinformatics 24(7):916–923

    Article  Google Scholar 

  • Sutton RS (1986) Two problems with backpropagation and other steepest-descent learning procedures for networks. In: Proceedings of the 8th annual conference cognitive science society. Erlbaum, pp 823–831

    Google Scholar 

  • Sziranyi T (1996) Robustness of cellular neural networks in image deblurring and texture segmentation. Int J Circuit Theory App 24(3):381–396

    Article  Google Scholar 

  • Tamaddoni-Nezhad A, Muggleton SH (2000) Searching the subsumption lattice by a genetic algorithm. In: Cussens J, Frisch A (eds) Proceedings of the 10th international conference on inductive logic programming. Springer, Berlin, pp 243–252

    Google Scholar 

  • Tamaddoni-Nezhad A, Muggleton S (2003) A genetic algorithms approach to ILP. In: Inductive logic programming, Lecture notes in computer science, vol 2583. Springer, Berlin, pp 285–300

    Google Scholar 

  • Tharakannel K, Goldberg D (2002) XCS with average reward criterion in multi-step environment. Technical report, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign

    Google Scholar 

  • Thompson S (1998) Pruning boosted classifiers with a real valued genetic algorithm. In: Research and development in expert systems XV – proceedings of ES'98. Springer, Berlin, pp 133–146

    Google Scholar 

  • Thompson S (1999) Genetic algorithms as postprocessors for data mining. In: Data mining with evolutionary algorithms: research directions – papers from the AAAI workshop, Tech report WS–99–06. AAAI Press, Menlo Park, CA, pp 18–22

    Google Scholar 

  • Thrift P (1991) Fuzzy logic synthesis with genetic algorithms. In: Booker LB, Belew RK (eds) Proceedings of 4th international conference on genetic algorithms (ICGA'91). Morgan Kaufmann, San Francisco, CA, pp 509–513

    Google Scholar 

  • Tomlinson A (1999) Corporate classifier systems. PhD thesis, University of the West of England

    Google Scholar 

  • Tomlinson A, Bull L (1998) A corporate classifier system. In: Eiben AE, Bäck T, Shoenauer M, Schwefel H-P (eds) Proceedings of the fifth international conference on parallel problem solving from nature – PPSN V, Lecture notes in computer science, vol 1498. Springer, Berlin, pp 550–559

    Chapter  Google Scholar 

  • Tomlinson A, Bull L (2002) An accuracy-based corporate classifier system. J Soft Comput 6(3–4):200–215

    Article  MATH  Google Scholar 

  • Tran TH, Sanza C, Duthen Y, Nguyen TD (2007) XCSF with computed continuous action. In: Genetic and evolutionary computation conference (GECCO 2007). ACM, New York, pp 1861–1869

    Google Scholar 

  • Tumer K, Ghosh J (1996) Analysis of decision boundaries in linearly combined neural classifiers. Pattern Recogn 29(2):341–348

    Article  Google Scholar 

  • Turney P (1996) How to shift bias: lessons from the Baldwin effect. Evolut Comput 4(3):271–295

    Article  Google Scholar 

  • Valentini G, Masulli F (2002) Ensembles of learning machines. In: WIRN VIETRI 2002: Proceedings of the 13th Italian workshop on neural nets-revised papers. Springer, Berlin, pp 3–22

    Google Scholar 

  • Valenzuela-Rendón M (1989) Two analysis tools to describe the operation of classifier systems. PhD thesis, University of Alabama. Also TCGA technical report 89005

    Google Scholar 

  • Valenzuela-Rendón M (1991) The fuzzy classifier system: a classifier system for continuously varying variables. In: Booker LB, Belew RK (eds) Proceedings of the 4th international conference on genetic algorithms (ICGA'91). Morgan Kaufmann, San Francisco, CA, pp 346–353

    Google Scholar 

  • Valenzuela-Rendón M (1998) Reinforcement learning in the fuzzy classifier system. Expert Syst Appl 14:237–247

    Article  Google Scholar 

  • Vallim R, Goldberg D, Llorà X, Duque T, Carvalho A (2003) A new approach for multi-label classification based on default hierarchies and organizational learning. In: Proceedings of the genetic and evolutionary computation conference, workshop sessions: learning classifier systems. ACM, New York, pp 2017–2022

    Google Scholar 

  • Vanneschi L, Poli R (2012) Genetic programming: introduction, applications, theory and open issues. In: Rozenberg G, Bäck T, Kok J (eds) Handbook of natural computing. Springer, Berlin

    Google Scholar 

  • Venturini G (1993) SIA: a supervised inductive algorithm with genetic search for learning attributes based concepts. In: Brazdil PB (ed) ECML-93 - Proceedings of the European conference on machine learning. Springer, Berlin, pp 280–296

    Chapter  Google Scholar 

  • Vilalta R, Drissi Y (2002) A perspective view and survey of meta-learning. Artif Intell Rev 18(2):77–95

    Article  Google Scholar 

  • Wada A, Takadama K, Shimohara K, Katai O (2005c) Learning classifier systems with convergence and generalization. In: Bull L, Kovacs T (eds) Foundations of learning classifier systems. Springer, Berlin, pp 285–304

    Chapter  Google Scholar 

  • Wada A, Takadama K, Shimohara K (2005a) Counter example for Q-bucket-brigade under prediction problem. In: GECCO Workshops 2005. ACM, New York, pp 94–99

    Google Scholar 

  • Wada A, Takadama K, Shimohara K (2005b) Learning classifier system equivalent with reinforcement learning with function approximation. In: GECCO Workshops 2005. ACM, New York, pp 92–93

    Google Scholar 

  • Wada A, Takadama K, Shimohara K (2007) Counter example for Q-bucket-brigade under prediction problem. In: Kovacs T, LLòra X, Takadama K, Lanzi PL, Stolzmann W, Wilson SW (eds) Learning classifier systems. International workshops, IWLCS 2003-2005, revised selected papers, Lecture notes in computer science, vol 4399. Springer, Berlin, pp 128–143

    Google Scholar 

  • Whitley D, Goldberg D, Cantú-Paz E, Spector L, Parmee I, Beyer HG (eds) (2000) Proceedings of the genetic and evolutionary computation conference (GECCO-2000). Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  • Whiteson S, Stone P (2006) Evolutionary function approximation for reinforcement learning. J Mach Learn Res 7:877–917

    MathSciNet  MATH  Google Scholar 

  • Whitley D, Starkweather T, Bogart C (1990) Genetic algorithms and neural networks: optimizing connections and connectivity. Parallel Comput 14(3):347–361

    Article  Google Scholar 

  • Whitley D, Gordon VS, Mathias K (1994) Lamarckian evolution, the Baldwin effect and function optimization. In: Parallel problem solving from nature (PPSN-III). Springer, Berlin, pp 6–15

    Google Scholar 

  • Wilcox JR (1995) Organizational learning within a learning classifier system. Master's thesis, University of Illinois. Also Technical Report No. 95003 IlliGAL

    Google Scholar 

  • Wilson SW (2001a) Mining oblique data with XCS. In: Lanzi PL, Stolzmann W, Wilson SW (eds) Advances in learning classifier systems, third international workshop, IWLCS 2000, Lecture notes in computer science, vol 1996. Springer, Berlin, pp 158–176

    Chapter  Google Scholar 

  • Wilson SW (1989) Bid competition and specificity reconsidered. Complex Syst 2:705–723

    Google Scholar 

  • Wilson SW (1994) ZCS: a zeroth level classifier system. Evolut Comput 2(1):1–18. http://prediction-dynamics.com/

  • Wilson SW (1995) Classifier fitness based on accuracy. Evolut Comput 3(2):149–175. http://prediction-dynamics.com/

    Google Scholar 

  • Wilson SW (1998) Generalization in the XCS classifier system. In: Koza JR, Banzhaf W, Chellapilla K, Deb K, Dorigo M, Fogel DB, Garzon MH, Goldberg DE, Iba H, Riolo R (eds) Genetic programming 1998: proceedings of the third annual conference, Morgan Kaufmann, San Francisco, CA, pp 665–674. http://prediction-dynamics.com/

  • Wilson SW (1999) Get real! XCS with continuous-valued inputs. In: Booker L, Forrest S, Mitchell M, Riolo RL (eds) Festschrift in honor of John H. Holland. Center for the Study of Complex Systems. pp 111–121. http://prediction-dynamics.com/

  • Wilson SW (2000) Mining oblique data with XCS. In: Proceedings of the international workshop on learning classifier systems (IWLCS-2000), in the joint workshops of SAB 2000 and PPSN 2000. Extended abstract

    Google Scholar 

  • Wilson SW (2001b) Function approximation with a classifier system. In: Spector L, Goodman ED, Wu A, Langdon WB, Voigt HM, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon MH, Burke E (eds) Proceedings of the genetic and evolutionary computation conference (GECCO-2001). Morgan Kaufmann, San Francisco, CA, pp 974–981

    Google Scholar 

  • Wilson SW (2002a) Classifiers that approximate functions. Natural Comput 1(2–3):211–234

    Article  MATH  Google Scholar 

  • Wilson SW (2002b) Compact rulesets from XCSI. In: Lanzi PL, Stolzmann W, Wilson SW (eds) Advances in learning classifier systems, Lecture notes in artificial intelligence, vol 2321. Springer, Berlin, pp 196–208

    Google Scholar 

  • Wilson SW (2007) Three architectures for continuous action. In: Kovacs T, LLòra X, Takadama K, Lanzi PL, Stolzmann W, Wilson SW (eds) Learning classifier systems. International workshops, IWLCS 2003-2005, revised selected papers, Lecture notes in computer science, vol 4399. Springer, Berlin, pp 239–257

    Google Scholar 

  • Wilson SW (2008) Classifier conditions using gene expression programming. In: Bacardit J, Bernadó-Mansilla E, Butz M, Kovacs T, Llorà X, Takadama K (eds) Learning classifier systems. 10th and 11th international workshops (2006–2007), Lecture notes in computer science, vol 4998. Springer, Berlin, pp 206–217

    Google Scholar 

  • Wilson SW, Goldberg DE (1989) A critical review of classifier systems. In: Schaffer JD (ed) Proceedings of the 3rd international conference on genetic algorithms. Morgan Kaufmann, San Francisco, CA, pp 244–255. http://prediction-dynamics.com/

  • Wolpert DH (1996) The lack of a priori distinctions between learning algorithms. Neural Comput 8(7):1341–1390

    Article  Google Scholar 

  • Wong ML, Leung KS (2000) Data mining using grammar based genetic programming and applications. Kluwer, Norwell

    MATH  Google Scholar 

  • Woods K, Kegelmeyer W, Bowyer K (1997) Combination of multiple classifiers using local accuracy estimates. IEEE Trans Pattern Anal Mach Intell 19:405–410

    Article  Google Scholar 

  • Woodward JR (2003) GA or GP? That is not the question. In: Proceedings of the 2003 congress on evolutionary computation, CEC2003. IEEE Press, Washington DC, pp 1056–1063

    Google Scholar 

  • Yamasaki K, Sekiguchi M (2000) Clear explanation of different adaptive behaviors between Darwinian population and Larmarckian population in changing environment. In: Proceedings of the fifth international symposium on artificial life and robotics. pp 120–123

    Google Scholar 

  • Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447

    Article  Google Scholar 

  • Yao X, Islam MM (2008) Evolving artificial neural network ensembles. IEEE Comput Intell Mag 3(1):31–42

    Article  Google Scholar 

  • Yao X, Liu Y (1997) A new evolutionary system for evolving artificial neural networks. IEEE Trans Neural Networ 8:694–713

    Article  Google Scholar 

  • Yao X, Liu Y (1998) Making use of population information in evolutionary artificial neural networks. IEEE Trans Syst Man Cybern B 28(3):417–425

    MathSciNet  Google Scholar 

  • Zatuchna ZV (2005) AgentP: a learning classifier system with associative perception in maze environments. PhD thesis, University of East Anglia

    Google Scholar 

  • Zatuchna ZV (2004) AgentP model: Learning Classifier System with Associative Perception. In 8th parallel problem solving from nature international conference (PPSN VIII). pp 1172–1182

    Google Scholar 

  • Zhang B-T, Veenker G (1991) Neural networks that teach themselves through genetic discovery of novel examples. In: Proceedings 1991 IEEE international joint conference on neural networks (IJCNN'91) vol 1. IEEE Press, Washington DC, pp 690–695

    Google Scholar 

Download references

Acknowledgments

Thanks to my editor Thomas Bäck for his patience and encouragement, and to Larry Bull, John R. Woodward, Natalio Krasnogor, Gavin Brown and Arjun Chandra for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Kovacs .

Editor information

Editors and Affiliations

Glossary

EA

Evolutionary Algorithm

FRBS

Fuzzy Rule-Based System

GA

Genetic Algorithm

GBML

Genetics-Based Machine Learning

GFS

Genetic Fuzzy System

GP

Genetic Programming

LCS

Learning Classifier System

NN

Neural Network

SL

Supervised Learning

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kovacs, T. (2012). Genetics-Based Machine Learning. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_30

Download citation

Publish with us

Policies and ethics