Abstract
Tensor valued images, for instance originating from diffusion tensor magnetic resonance imaging (DT-MRI), have become more and more important over the last couple of years. Due to the nonlinear structure of such data it is nontrivial to adapt well-established image processing techniques to them. In this contribution we derive anisotropic diffusion equations for tensor-valued images based on the intrinsic Riemannian geometric structure of the space of symmetric positive tensors. In contrast to anisotropic diffusion approaches proposed so far, which are based on the Euclidian metric, our approach considers the nonlinear structure of positive definite tensors by means of the intrinsic Riemannian metric. Together with an intrinsic numerical scheme our approach overcomes a main drawback of former proposed anisotropic diffusion approaches, the so-called eigenvalue swelling effect. Experiments on synthetic data as well as real DT-MRI data demonstrate the value of a sound differential geometric formulation of diffusion processes for tensor valued data.
Chapter PDF
Similar content being viewed by others
Keywords
- Fractional Anisotropy
- Diffusion Tensor
- Anisotropic Diffusion
- Structure Tensor
- Diffusion Tensor Magnetic Resonance Imaging
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Berger, M.-O., Deriche, R., Herlin, I., Jaffré, J., Morel, J.-M. (eds.): Icaos 1996: Images and wavelets and PDEs. Lecture Notes in Control and Information Sciences, vol. 219 (1996)
Weickert, J.: Anisotropic diffusion in image processing. Teubner, Stuttgart (1998)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (1990)
Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: ICCV, London, UK, pp. 433–438 (1987)
Tschumperlé, D., Deriche, R.: Diffusion tensor regularization with constraints preservation. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), pp. 948–953 (2001)
Chefd’hotel, C., Tschumperlé, D., Deriche, R., Faugeras, O.: Regularizing flows for constrained matrix-valued images. J. Math. Imaging Vis. 20(1-2), 147–162 (2004)
Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. International Journal of Computer Vision 66(1), 41–66 (2006)
Castano-Moraga, C.A., Lenglet, C., Deriche, R., Ruiz-Alzola, J.: A Riemannian approach to anisotropic filtering of tensor fields. Signal Processing 87(2), 263–276 (2007)
Weickert, J., Hagen, H.: Visualization and Processing of Tensor Fields (Mathematics and Visualization). Springer, New York (2005)
Rao, C.: Information and accuracy attainable in estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–91 (1945)
Martin-Fernandez, M., San-Jose, R., Westin, C.F., Alberola-Lopez, C.: A novel Gauss-Markov random field approach for regularization of diffusion tensor maps. In: Moreno-Díaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 506–517. Springer, Heidelberg (2003)
Weickert, J., Brox, T.: Diffusion and regularization of vector- and matrix-valued images. In: Inverse Problems, Image Analysis, and Medical Imaging. Contemporary Mathematics, pp. 251–268 (2002)
Westin, C.-F., Knutsson, H.: Tensor field regularization using normalized convolution. In: Moreno-Díaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 564–572. Springer, Heidelberg (2003)
Burgeth, B., Didas, S., Florack, L., Weickert, J.: A generic approach to the filtering of matrix fields with singular PDEs. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 556–567. Springer, Heidelberg (2007)
Gur, Y., Sochen, N.A.: Denoising tensors via Lie group flows. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 13–24. Springer, Heidelberg (2005)
Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl (2003)
Fletcher, P., Joshi, S.: Principle geodesic analysis on symmetric spaces: Statistics of diffusion tensors. In: Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis, ECCV 2004 Workshops CVAMIA and MMBIA, pp. 87–98 (2004)
Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.D., Lehericy, S., Ugurbil, K.: A Riemannian approach to diffusion tensor images segmentation. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 591–602. Springer, Heidelberg (2005)
Batchelor, P.G., Moakher, M., Atkinson, D., Calamante, F., Connelly, A.: A rigorous framework for diffusion tensor calculus. Magn. Reson. Med. 53(1), 221–225 (2005)
Fillard, P., Arsigny, V., Ayache, N., Pennec, X.: A Riemannian framework for the processing of tensor-valued images. In: Fogh Olsen, O., Florack, L.M.J., Kuijper, A. (eds.) DSSCV 2005. LNCS, vol. 3753, pp. 112–123. Springer, Heidelberg (2005)
Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.: Statistics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor MRI processing. J. Math. Imaging Vis. 25(3), 423–444 (2006)
Zéraï, M., Moakher, M.: Riemannian curvature-driven flows for tensor-valued data. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 592–602. Springer, Heidelberg (2007)
Helgason, S.: Differential Geometry, Lie groups and symmetric spaces. Academic Press, London (1978)
El-Fallah, A., Ford, G.: On mean curvature diffusion in nonlinear image filtering. Pattern Recognition Letters 19, 433–437 (1998)
Sochen, N., Kimmel, R., Malladi, R.: A geometrical framework for low level vision. IEEE Transaction on Image Processing, Special Issue on PDE based Image Processing 7(3), 310–318 (1998)
Begelfor, E., Werman, M.: Affine invariance revisited. In: CVPR ’06: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2087–2094. IEEE Computer Society Press, Washington (2006)
Zhang, F., Hancock, E.: Tensor MRI regularization via graph diffusion. In: BMVC 2006, pp. 578–589 (2006)
Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine 56(2), 411–421 (2006)
Gur, Y., Sochen, N.A.: Fast invariant Riemannian DT-MRI regularization. In: Proc. of IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), Rio de Janeiro, Brazil, pp. 1–7 (2007)
Mémoli, F., Sapiro, G., Osher, S.: Solving variational problems and partial differential equations mapping into general target manifolds. Journal of Computational Physics 195(1), 263–292 (2004)
Brox, T., Weickert, J., Burgeth, B., Mrázek, P.: Nonlinear structure tensors. Revised version of technical report no. 113. Saarland University, Saarbrücken, Germany (2004)
Nielsen, M., Johansen, P., Olsen, O., Weickert, J. (eds.): Scale-Space 1999. LNCS, vol. 1682. Springer, Heidelberg (1999)
Maaß, H.: Siegel’s Modular Forms and Dirichlet Series. Lecture notes in mathematics, vol. 216. Springer, Heidelberg (1971)
Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Fast and simple calculus on tensors in the log-Euclidean framework. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 115–122. Springer, Heidelberg (2005)
Bihan, D.L., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., Chabriat, H.: Diffusion tensor imaging: Concepts and applications. Journal of Magnetic Resonance Imaging 13(4), 534–546 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Krajsek, K., Menzel, M.I., Zwanger, M., Scharr, H. (2008). Riemannian Anisotropic Diffusion for Tensor Valued Images. In: Forsyth, D., Torr, P., Zisserman, A. (eds) Computer Vision – ECCV 2008. ECCV 2008. Lecture Notes in Computer Science, vol 5305. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88693-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-88693-8_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88692-1
Online ISBN: 978-3-540-88693-8
eBook Packages: Computer ScienceComputer Science (R0)