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Abstract. Tensor valued images, for instance originating from diffusion tensor
magnetic resonance imaging (DT-MRI), have become more and more important
over the last couple of years. Due to the nonlinear structure of such data it is
nontrivial to adapt well-established image processing techniques to them. In this
contribution we derive anisotropic diffusion equations for tensor-valued images
based on the intrinsic Riemannian geometric structure of the space of symmet-
ric positive tensors. In contrast to anisotropic diffusion approaches proposed so
far, which are based on the Euclidian metric, our approach considers the nonlin-
ear structure of positive definite tensors by means of the intrinsic Riemannian
metric. Together with an intrinsic numerical scheme our approach overcomes
a main drawback of former proposed anisotropic diffusion approaches, the so-
called eigenvalue swelling effect. Experiments on synthetic data as well as real
DT-MRI data demonstrate the value of a sound differential geometric formula-
tion of diffusion processes for tensor valued data.

1 Introduction

In this paper anisotropic diffusion driven by a diffusion tensor is adapted to tensor-
valued data in a way respecting the Riemannian geometry of the data structure. Nonlin-
ear diffusion has become a widely used technique with a well understood theory (see
e.g. [1,2] for overviews). It was introduced in [3] and has been frequently applied to
scalar-, color- or vector-valued data. Anisotropic diffusion1 driven by a diffusion ten-
sor [2] is the most general form of diffusion processes. Tensor-valued data frequently
occur in image processing, e.g. covariance matrices or structure tensors in optical flow
estimation (see e.g. [4]). Due to rapid technological developments in magnetic reso-
nance imaging (MRI) also interest in tensor-valued measurement data increases. Due
to the increasing need of processing tensor valued data, the development of appropri-
ate regularization techniques become more and more important (e.g. see [5,6,7,8] and
[9] as well as references therein). Riemannian geometry refers to the fact that the set
of positive definite tensors P (n) of size n does not form a vector space but a nonlin-
ear manifold embedded in the vector space of all symmetric matrices. The nonlinear

1 Please note that the term ’anisotropic diffusion’ is not uniquely defined in literature. In this
contribution we use the term in accordance with the definition given in [2].
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structure of P (n) is studied from a differential geometric point of view for a long time
[10]. Due to the nonlinear structure of P (n), well established image processing tech-
niques for scalar and vector valued data might destroy the positive definiteness of the
tensors. Approaches for processing tensor valued images can be classified into two
groups: using extrinsic [5,11,12,13,14] or intrinsic view [15,16,17,18,19,20,21,7,22].
Methods using the extrinsic point of view consider the space of positive definite sym-
metric tensors as an embedding in the space of all symmetric tensors which constitute
a vector space. Distances, as e.g. required for derivatives, are computed with respect
to the flat Euclidian metric of the space of symmetric matrices. To keep tensors on the
manifold of positive definite tensors, solutions are projected back onto the manifold
[5], selected only on the manifold in a stochastic sampling approach [11], or process-
ing is restricted to operations not leading out of P (n), e.g. convex filters [12,13,14].
Although then tensors stay positive definite the use of a flat metric is not appropriate to
deal with P (n). For instance in regularization, the processed tensors become deformed
when using the flat Euclidian metric [7] known as eigenvalue swelling effect [5,6,7,8].
Tschumperlé and Deriche [5] avoid the eigenvalue swelling effect by applying a spectral
decomposition and regularizing eigenvalues and eigenvectors separatively. Chefd’hotel
et al. [6] proposed to take the metric of the underlying manifold for deriving evolution
equations from energy functionals that intrinsically fulfill the constraints upon them
(e.g. rank or eigenvalue preserving) as well as for the numerical solution scheme. How-
ever, they consider the Euclidian metric for measuring distances between tensors such
that their methods suffer from the eigenvalue swelling effect for some of the proposed
evolution equations. Methods using the intrinsic point of view consider P (n) as a Rie-
mannian symmetric space (see [23] and Sect. 3 for an introduction in symmetric Rie-
mannian spaces) equipped with an affine invariant metric on the tangent space at each
point. Consequently, using this metric the eigenvalue swelling effect is avoided. The
symmetry property of the Riemannian manifold easily allows to define evolution equa-
tions on the tangent spaces, approximate derivatives by tangent vectors as well as con-
struct intrinsic gradient descent schemes as we will show for anisotropic diffusion in the
following.

Related work. Differential geometric approaches have been introduced to different
fields in image processing and computer vision [24,25,26]. Only quite recently, meth-
ods based on the Riemannian geometry of P (n) have been introduced independently
by different authors [16,17,18,19,20,21,7,22]. For instance, in [20,7] a ’Riemannian
framework for tensor computing’, has been proposed in which several well established
image processing approaches including interpolation, restoration and isotropic nonlin-
ear diffusion filtering have been generalized to P (n) in an intrinsic way. Furthermore,
an anisotropic regularization approach has been proposed by adapting the isotropic
Laplace-Beltrami operator that can be identified with a second order Markov Random
field approach. A quite similar approach has been proposed in [27] by formulating dif-
fusion filtering directly on a discrete graph structure. In [8], a weighted mean has been
proposed that allows to smooth the image in an anisotropic way. However, all these ap-
proaches [7,27,8], do not allow to construct diffusion tensors from model based struc-
ture estimation, as common in literature for scalar data [2]. To do so in an intrinsic
way, one cannot do without a numerical scheme for mixed second order derivatives,
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first introduced in the current paper. A computational more efficient approach than the
framework of Pennec et al. [7] based on the so called log-Euclidean metric has been
introduced in [28]. There, the positive definite tensors are mapped onto the space of
symmetric matrices by means of the matrix logarithmic map. In this new space com-
mon vector valued approaches can be applied. The final result is obtained by mapping
the transformed symmetric matrices back onto the space of positive definite matrices
using the matrix exponential map. However, the log-Euclidean metric is not affine in-
variant. As a consequence the approach might suffer from a change of coordinates.
However, the formulation of anisotropic diffusion for tensor valued data based on the
log-Euclidean metric might be a computational efficient alternative not proposed in lit-
erature so far. In [22,29] a Riemannian framework based on local coordinates has been
proposed (see also in [30] for a variational framework for general manifolds). Although,
the authors in [22,29] consider the affine invariant metric their approach may only be
classified as intrinsic in a continuous formulation. For computing discrete data, a sim-
ple finite difference approximation is applied. Inferring from a continuous formulation
without a proof to a discrete approximation can be misleading as constraints holding in
the continuous case may be relaxed by discretization. As a consequence, the proposed
approaches not necessarily preserve positive definiteness of tensors (for a detailed dis-
cussion of this topic for scalar valued signals we refer to [2]). Furthermore, the approach
of [29] shows no significant difference with the log Euclidean framework whereas our
approach clearly outperforms it. We refer to our approach as the full intrinsic scheme
in order to distinguish it from schemes that are only intrinsic in the continuous setting.
Anisotropic diffusion based on an extrinsic view [12,31] and by means of the exponen-
tial map [6] has been proposed. In both cases the Euclidian metric is used to measure
distances between tensors. As a consequence, both approaches suffer from the eigen-
value swelling effect.

Our contribution. We derive an intrinsic anisotropic diffusion equation for the mani-
fold of positive definite tensors. To this end, second order derivatives in the continuous
as well as discrete approximations are derived as they occur in the anisotropic diffusion
equation. The derived numerical scheme could also be used to generalize other PDEs
involving mixed derivatives from scalar valued images to the manifold P (n) without
the need of local coordinates. In the experimental part, we provide a study in which we
compare different state of the art regularization approaches with our approach.

2 Diffusion for Scalar Valued Images

We review diffusion filtering which is a well established image processing technique
for scalar valued images [3,32,2]. We formulate the diffusion equation by means of a
gradient descent of some energy functional that later allows us to generalize this con-
cept to tensor valued data. Let f be a scalar valued image defined on a N -dimensional
domain. Diffusion filtering image processing creates a family of images {u(x, t)|t ≥ 0}
from the solution of the physical diffusion equation

∂tu = div (D∇u) (1)
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with initial condition f = u(x, 0) and diffusion tensor D with components dij . Note
that we could also formulate the image restoration task as a solution of a diffusion reac-
tion equation by adding a data depending term to (1). We will discuss the pure diffusion
process only. All following results keep valid also for a formulation with data depend-
ing reaction terms. The diffusion equation can be reformulated applying the chain rule
in the form ∂tu =

∑
i,j(∂idij)(∂ju)+ dij∂i∂ju which will be more convenient for the

formulation on tensor valued data. The diffusion process can be classified according to
the diffusion tensor D. If the diffusion tensor does not depend upon the evolving im-
age, the diffusion process is denoted as linear due to the linearity of (1) otherwise it
is termed nonlinear. The diffusion process can furthermore be classified into isotropic
when the diffusion tensor is proportional to the identity matrix otherwise it is denoted as
anisotropic. Except for the nonlinear anisotropic diffusion scheme, the diffusion equa-
tion can be derived from a corresponding energy functional E(u) via calculus of varia-
tion, i.e. the gradient descent scheme of these energy functionals can be identified with
a diffusion equation. Let L(u) denote the energy density such that E(u) =

∫
L(u)dx,

w : IRN → IR a test function and ε a real valued variable. The functional derivative
δE := δE(u+εw)

δε

∣
∣
∣
ε=0

of an energy functional E(u) can be written as

δE =
∫

〈∇L(u), w〉u dx , (2)

where ∇L(u) defines the gradient of the energy density and 〈∇L(u), w〉u denotes the
scalar product of the energy density gradient ∇L(u) and the test function evaluated at
x. Note that w as well as ∇L(u) are elements of the tangent space at u which is the
Euclidian space itself for scalar valued images. As we will see in Sect. 4, this formu-
lation allows a direct generalization to the space of symmetric positive definite tensors.
The gradient descent scheme of the energy functional leads to the diffusion equation in
terms of the energy density

∂tu = −∇L(u) . (3)

Let us now consider the linear anisotropic diffusion equation (1), i.e. D not depending
on the evolving signal. The corresponding energy function is known to be

E(u) =
1
2

∫

∇uTD∇udx . (4)

The functional derivative of (4) can be brought into the form

δE(u) =
∫

〈−div (D∇u) , w〉u dx (5)

assuming homogenous Neumann boundary conditions and applying Green’s formula.
Comparing (5) with (2) gives together with (3) the diffusion equation (1). Our objective
is now to generalize the linear anisotropic diffusion process to the space of positive def-
inite tensors by means of the energy functional formulation. The nonlinear anisotropic
diffusion equation on P (n), can then be deduced from the linear one.
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3 The Space of Positive Definite Tensors

In the following we review the structure of the space of positive definite tensors P (n)
and introduce the differential geometric tools necessary for deriving anisotropic diffu-
sion equations for P (n). By introducing a basis, any tensor can be identified with its
corresponding matrix representation A ∈ R

n×n. The space of n × n matrices consti-
tutes a vector space embodied with a scalar product 〈A, B〉 = Tr

(
AT B

)
, inducing

the norm ||A|| =
√〈A, A〉. However, tensors Σ frequently occurring in computer vi-

sion and image processing applications, e.g. covariance matrices and DT-MRI tensors,
embody further structure on the space of tensors: they are symmetric ΣT = Σ and
positive definite, i.e. it holds xT Σx > 0 for all nonzero x ∈ R

n. The approach to
anisotropic diffusion presented here, measures distances between tensors by the length
of the shortest path, the geodesic, with respect to GL(n) (affine) invariant Riemannian
metric on P (n). This metric takes the nonlinear structure of P (n) into account and it
has demonstrated in several other application its superiority over the flat Euclidean ma-
tric [17,18,20,21,7,22]. Such an intrinsic treatment requires the formulation of P (n) as
a Riemannian manifold, i.e. each tangent space is equipped with an inner product that
smoothly varies from point to point. A geodesic Γ X(t) parameterized by the ’time’ t
and going through the tensor Γ (0) = Σ at time t = 0 is uniquely defined by its tan-
gent vector X at Σ. This allows one to describe each geodesic by a mapping from the
subspace A = (tX), t ∈ R spanned by the tangent vector onto the manifold P (n). The
GL(n) invariant metric is induced by the scalar product

〈W1, W2〉Σ = Tr
(
Σ− 1

2 W1Σ
−1W2Σ

− 1
2

)
, (6)

as one can easily verify. The GL(n) invariant metric allows to derive an expression of
the geodesic equation going through Σ by tangent vectors X [7]

Γ Σ (t) = Σ
1
2 exp(tΣ− 1

2 XΣ− 1
2 )Σ

1
2 . (7)

For t = 1 this map is denoted as the exponential map which is one to one in case of the
space of positive definite tensors. Its inverse, denoted as the logarithmic map, reads

X = Σ
1
2 log

(
Σ− 1

2 ΓΣ (1)Σ− 1
2

)
Σ

1
2 . (8)

As the gradient of any energy density ∇L is element of the tangent space [33], we can
formulate a diffusion process as ∂tΣ = −∇L on the tangent space. The evolution of
the tensor Σ is obtained by going a small step in the negative direction of the gradient
−dt∇L and mapping this point back on the manifold using the geodesic equation (7).
The energy density is then computed for the tangent vector at Γ Σ (dt) which in turn can
then be used for finding the next tensor in the evolving scheme as described above. This
is a gradient descent approach, denoted as the geodesic marching scheme, for energy
densities defined on P (n) and which per construction assures that we cannot leave the
manifold.
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4 Riemannian Anisotropic Diffusion

After reviewing the necessary differential geometric tools, we will derive anisotropic
diffusion equations for a tensor field P (n) over R

N . As done for the diffusion equation
for the scalar valued signals (Sect. 2), we derive the linear diffusion equation by vari-
ation of the corresponding energy functional and infer from the linear equation to the
nonlinear counterpart. Let ∂iΣ(x), i = 1, ..., N denote partial derivative of the tensor
field in direction i, elements of the tangent space at Σ. We define the energy functional

E(Σ) =
∫ ∑

i,j

dij〈∂iΣ, ∂jΣ〉Σ dx (9)

with 〈∂iΣ, ∂jΣ〉Σ = Tr
(
(∂iΣ)Σ−1(∂jΣ)Σ−1

)
. (10)

The components of the diffusion tensor dij (please do not confuse dij with the elements
of the tensor field) locally controls the direction of smoothing and for the moment being
does not depend on the evolving tensor field. The gradient of the energy functional is
then derived by defining a ’test function’ W that is actually a tangent vector in the
tangent space at Σ and computing the functional derivative

δE = 2
∫ ∑

ij

dijTr((∂iW )Σ−1 (∂jΣ)Σ−1 (11)

− (∂iΣ)Σ−1 (∂jΣ)Σ−1WΣ−1)dx (12)

In order to get rid of the derivatives on the ’test function’ W we integrate by parts with
respect to xj . Assuming homogenous Neumann boundary conditions the functional
derivative can be brought in the form

δE = −2
∑

i,j

∫

〈W, Σ∂i(dijΣ
−1(∂jΣ)Σ−1)Σ (13)

+(∂iΣ)Σ−1(∂jΣ)〉Σ dx (14)

Comparing the inner product with the general form in (2) identifies the gradient of the
energy density

∇L = −2
∑

i,j

Σ∂i(dijΣ
−1(∂jΣ)Σ−1)Σ + (∂iΣ)Σ−1(∂jΣ) . (15)

Inserting this energy density in (3) results in the desired diffusion equation. Using the
identity ∂iΣ

−1 = −Σ−1(∂iΣ)Σ−1 the energy density gradient can be simplified to

∇L = −2
∑

i,j

(
∂i∂jΣ − (∂iΣ)Σ−1(∂jΣ)

) − 2
∑

i,j

(∂idij)(∂jΣ) (16)

The terms on the right side of (16) for which i = j hold ΔiΣ = ∂2
i Σ − (∂iΣ)Σ−1

(∂iΣ) are components of the Laplace Beltrami operator Δ =
∑

i Δi derived in [7]. In
addition to the work in [20,7], we also derived mixed components

ΔijΣ = ∂i∂jΣ − (∂iΣ)Σ−1(∂jΣ), i �= j (17)
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needed for the linear anisotropic diffusion equation. The nonlinear anisotropic diffu-
sion equation is defined exchanging the diffusion tensor components in (4) with com-
ponents depending on the evolved tensor field. So we have all components to define an
anisotropic diffusion equation on the space of positive definite matrices in an intrinsic
way. To this end, only the second order derivatives ∂2

i and ∂i∂j occurring in (1) need
to be exchanged by their counterparts Δi and Δij . So far we have not specified the
explicit form of the diffusion tensor which should be made up here. We generalize the
structure tensor to the nonlinear space and afterwards, as in the case of scalar valued
images, construct the diffusion tensor from the spectral decomposition of the structure
tensor. Let ∇Σ = (∂1Σ, ..., ∂NΣ)T denote the gradient and a a unite vector in R

N

such that we can express the derivative in direction a as ∂a = aT∇. The direction of
less variation in the tensor space can then analogous to the structure tensor in linear
spaces, be estimated by minimizing the local energy

E(a) =
∫

V

〈∂aΣ, ∂aΣ〉Σdx = aT Ja , (18)

where we defined the components of the structure tensors J on P (n) by Jij =∫
V
〈∂iΣ, ∂jΣ〉Σdx.The diffusion tensor D is then designed as usual by exchanging

the eigenvalues λj of the structure tensor by a decreasing diffusivity function g(λj).
For our numerical experiments (in 2D) we choose g(λl) = 1/

√
1 + λl/β2 for the

larger eigenvalue and g(λs) = 1 for the smaller eigenvalue with the heuristically cho-
sen contrast parameter β = 0.05.

5 Numerical Issues

So far we have assumed the tensor to be defined on a continuous domain. In the ex-
periential setting we are confronted with tensor fields defined on a discrete grid. The
application of Riemanian anisotropic diffusion requires a discrete approximation for
the derivatives derived in Sect. 4. In principle, we could use matrix differences to ap-
proximate the derivatives but this would contradict our effort to derive an intrinsic ex-
pression of the anisotropic diffusion equation. The finite differences are extrinsic since
they are based on Euclidian differences between tensors, i.e. they use the difference in
the space of symmetric matrices and not the Riemannian metric of the space P (n). In
order to approximate the gradient ∇L in (16) on a discrete grid, we need discrete ap-
proximations of derivatives of first and second order. Intrinsic approximations to first
order derivatives have already proposed in [20] and is reviewed here with the following

preposition. Let us denote with TΣej
x :=

−−−−−−−−−−−−→
Σ(x)Σ(x + εej) the tangent vector defined

by the logarithmic map as

TΣej
x = Σ

1
2 log

(
Σ− 1

2 Σ(x + εej)Σ− 1
2

)
Σ

1
2 (19)

Preposition 1. The first order discrete approximation of the first order derivative of Σ

in direction j reads

∂jΣ =
1
2ε

(−−−−−−−−−−−−→
Σ(x)Σ(x + εej) −

−−−−−−−−−−−−→
Σ(x)Σ(x − εej)

)
+ O(ε) (20)
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A second order discrete approximation scheme to the second order derivative in di-
rection ej has been derived in [7]. We state it here as a second preposition, for the proof
see [7].

Preposition 2. The second order discrete approximation of the second order derivative
in direction ej is

ΔjΣ =
1
ε2

(
−−−−−−−−−−−−→
Σ(x)Σ(x + εej) +

−−−−−−−−−−−−→
Σ(x)Σ(x − εej)) + O(ε2) . (21)

For the anisotropic diffusion equation we also need mixed derivatives ΔijΣ that can be
approximated according to preposition 3.

Preposition 3. The second order discrete approximation of the second order mixed
derivative in direction i and j is given by

ΔijΣ + ΔjiΣ

2
=

1
ε2

(
−−−−−−−−−−−−→
Σ(x)Σ(x + εen) +

−−−−−−−−−−−−→
Σ(x)Σ(x − εen) (22)

−−−−−−−−−−−−−→
Σ(x)Σ(x + εep) −

−−−−−−−−−−−−→
Σ(x)Σ(x − εep)) + O(ε2) ,

with the abbreviation en = 1√
2
(ei + ej), ep = 1√

2
(ei − ej).

Proof. We expend the tangent vector as

TΣen
x = ε∂nΣ +

ε2

2
∂2

nΣ − ε2

2
(∂nΣ)Σ− 1

2 (∂nΣ) + O(ε3) . (23)

Now, we express the derivative in direction n by derivatives along the coordinate axes
in i and j direction , ∂n = 1√

2
∂i + 1√

2
∂j , yielding

TΣen
x =

ε√
2
(∂iΣ + ∂jΣ) +

ε2

4
(
(
∂2

i Σ + ∂2
j Σ + 2∂i∂jΣ

)

−(∂iΣ)Σ− 1
2 (∂iΣ) − (∂jΣ)Σ− 1

2 (∂jΣ)

−(∂iΣ)Σ− 1
2 (∂jΣ) − (∂jΣ)Σ− 1

2 (∂iΣ)) + O(ε3) .

Computing the sum TΣΔen
x := TΣen

x +TΣ−en
x becomes a fourth order approximation

as all uneven terms cancel out

TΣΔen
x =

ε2

4
(
(
∂2

i Σ + ∂2
j Σ + 2∂i∂jΣ

) − (∂iΣ)Σ− 1
2 (∂iΣ) − (24)

(∂jΣ)Σ− 1
2 (∂jΣ) − (∂iΣ)Σ− 1

2 (∂jΣ) − (∂jΣ)Σ− 1
2 (∂iΣ)) + O(ε4)

Expanding TΣΔep
x := TΣep

x + TΣ−ep
x in the same way yields

TΣΔep
x =

ε2

4
(
(
∂2

i Σ + ∂2
j Σ − 2∂i∂jΣ

) − (∂iΣ)Σ− 1
2 (∂iΣ) − (25)

(∂jΣ)Σ− 1
2 (∂jΣ) + (∂iΣ)Σ− 1

2 (∂jΣ) + (∂jΣ)Σ− 1
2 (∂iΣ)) + O(ε4)

By subtracting (25) from (24) and dividing the square of the grid size ε2 we obtained
the claimed second order approximation for the mixed derivatives which concludes the
proof.
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6 Experiments

Performance of our Riemannian anisotropic diffusion (RAD) approach is demonstrated
on synthetic tensor fields and real DT-MRI data. We compare our Riemannian anisotropic
diffusion scheme with three state of the art tensor valued regularization schemes: the
anisotropic diffusion (EAD) scheme based on the flat Euclidean metric [12,31], the in-
trinsic nonlinear isotropic diffusion (RID) scheme [20] and the nonlinear isotropic diffu-
sion (LEID) scheme based on the log-Euclidean metric [34]. As a computational effective
alternative to our Riemannian anisotropic diffusion scheme, we propose to combine the
diffusion scheme proposed in [12,31] with the log-Euclidean metric [34] which is con-
sidered as a fourth reference method (LEAD). As a performance measure for the reg-
ularized tensor field, we choose the fractional anisotropy (FA) [35]. Measures derived
from DT-MRI such as the FA are used to generate additional image contrast required
for detection of brain lesions, or to delineate white matter (highly directional structures)
from non-white matter tissue, which is important for surgery.FA takes on values between
0 (corresponding to perfect isotropy) and 1 indicating maximal anisotropy. For solving
the diffusion equations, we used the same time step of dt = 0.01 for all experiments and
computed the evolving tensor field for 1000 time steps. As shown in [21], the linear gradi-
ent descent scheme realizes a first order approximation to the intrinsic marching scheme,
such that for small time steps diffusion processes based on different metrics should be
comparable for distinct times.

Fig. 1. Line reconstruction experiment; upper row (from left to right): original tensor field, EAD
scheme, LEAD scheme; lower row (from left to right): LEID scheme, RID scheme, RAD scheme
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Fig. 2. Denoising experiment; upper row (from left to right): noise corrupted tensor field, EAD
scheme, our LEAD scheme; lower row (from left to right): LEID scheme, RID scheme, RAD
scheme

6.1 Synthetic Data

Experiment 1. In the first experiment on synthetic data we examine the ability of the
different diffusion processes to complete interrupted line structures. To this end, we
generate a 32 × 32 large tensor field of 3 × 3 tensors (see Fig. 2 upper left; in order to
visualize details more precise only a cutout of the tensor field is shown). Each tensor is
represented by an ellipsoid and the orientation of its main axis is additional color coded
whereas the FA is encoded in the saturation of the depicted tensors. The line structure is
interrupted by isotropic tensors with small eigenvalues (λj = 0.05) that are hardly vis-
ible due to the saturation encoding of the FA. The results for all diffusion processes are
shown in Fig. 1. The nonlinear isotropic processes LEID and RID stops at the line inter-
ruption and is not able to complete the line. This results from the fact that, although the
smoothing process is also anisotropic for nonlinear isotropic diffusion processes [20],
the diffusivity function depends only on its direct neighbors and therefore does not ’see’
the line behind the gap. The anisotropic diffusion schemes are steered by the diffusion
tensor which encodes the directional information of a neighborhood depending on the
average region for the structure tensor. The anisotropic diffusion approaches fill the gap
and reconstruct the line. However, again the EAD-process suffers from the eigenvalue
swelling effect and only one tensor connects both interrupted line structures. However
increasing the average region of the structure tensor might fill the gap more clearly. Our
RAD and LEAD schemes reconstruct the line structure. However, we observe a small
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decreasing of the anisotropy for the log-Euclidean metric, whereas the anisotropy for
the affine invariant metric increases in the vicinity of image borders.

Experiment 2. In this experiment we examine the ability of the different diffusion
schemes to reconstruct the tensor field from noisy data. To this end, we corrupt the tan-
gent vector of each tensor by Gaussian noise (with standard deviations σ = 0.6). Fig. 2
shows the noise corrupted field (the noise free tensor field is the same as in experiment
1) and the evolved tensor fields for the different diffusion schemes. The anisotropic
schemes manage (more or less) to close the gap in the line structure despite the noise
whereas the isotropic schemes does not. The schemes based on the log Euclidean met-
ric lead to a slight decrease of the anisotropy whereas the RAD schemes leads to an
increase of the anisotropy in the tensor field. How this effect influences further process-
ing steps, e.g. fiber tracking algorithm, is left to be examined for future research.

6.2 Real Data

Experiment 3. In our last experiment, the different algorithms were applied to DT-
MRI data measured from a human brain in-vivo. DT-MRI of the brain of a healthy vol-
unteer (written informed consent was obtained) was performed on a 1.5 T Magnetom
Avanto scanner (Siemens Medical Solutions). A single-shot diffusion-weighted twice-
refocused spin-echo planar imaging sequence was used. Measurement parameters were

Fig. 3. Denoising experiment 3; (upper row, from left to right): noisy DT-MRI image, LEID
scheme, RID scheme; (lower row, from left to right) EAD scheme, LEAD scheme, RAD scheme
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as follows : TR = 6925 ms / TE=104ms / 192 matrix with 6/8 phase partial fourier, 23
cm field of view (FOV), and 36 2.4-mm-thick contiguous axial slices. The in-plane res-
olution was 1.2 mm/pixel. We estimate a volumetric tensor field of size 192× 192× 36
and take one slice for further processing. For evaluation purposes we recorded tensor
fields of the brain with 6 different signal-to-noise ratios (SNR), denoted as DTI1-6 in
the following. Thus, we can use the DT-MRI-images (DTI6) from the long measure-
ment (i.e. good SNR) as a reference data set, where we compare the FA of the tensor
with the results obtained from the lower SNR data set (DTI1-5), which can be obtained
in a clinical feasible measurement time. We compute, starting from the five different
noisy tensor fields, the evolved tensor fields for all considered diffusion schemes (Fig. 3
shows cutouts of the noisy field and evolved fields) and compare its FA with the ref-
erence field. All schemes lead to rather smooth tensor fields. However, the anisotropic
diffusion schemes (EAD, LEAD and RAD) lead to an enhancement of orientated struc-
tures within in the tensor fields which is most distinct for our RAD scheme. As in the
previous experiments, the eigenvalue swelling effect in case of the EAD scheme can be
observed. Our RAD/LEAD schemes yield the best results among anisotropic regular-
ization schemes with respect to the FA measure as shown in Tab. 1.

Table 1. Results of experiment 3: The average and standard deviation of the the fractional
anisotropy error |FA − FA| (FA belongs to the reference tensor field) over 1000 time steps
for each diffusion scheme as well as for five different noise levels are computed

Method DTI1 DTI2 DTI3 DTI4 DTI5
EAD 0.098 ± 0.007 0.100 ± 0.008 0.103 ± 0.008 0.109 ± 0.009 0.112 ± 0.010

RID 0.112 ± 0.016 0.119 ± 0.015 0.116 ± 0.013 0.114 ± 0.012 0.113 ± 0.013

LEID 0.099 ± 0.017 0.108 ± 0.017 0.107 ± 0.014 0.106 ± 0.012 0.105 ± 0.012

LEAD 0.078 ± 0.005 0.079 ± 0.006 0.081 ± 0.006 0.084 ± 0.007 0.086 ± 0.007

RAD 0.089 ± 0.004 0.089 ± 0.005 0.093 ± 0.007 0.096 ± 0.007 0.098 ± 0.009

7 Conclusion

We generalized the concept of anisotropic diffusion to tensor valued data with respect
to the affine invariant Riemannian metric. We derived the intrinsic mixed second order
derivatives as they are required for the anisotropic diffusion process. Furthermore, we
derived a discrete intrinsic approximation scheme for the mixed second order deriva-
tives. Since mixed second order derivatives appear also in other methods based on par-
tial differential equation, this contribution could also serve as a basis for generalizing
these methods in an intrinsic way in a discrete formulation. Experiments on synthetic
as well as real world data demonstrate the value of our full intrinsic differential geo-
metrical formulation of the anisotropic diffusion concept. As a computational effective
alternative, we proposed an anisotropic diffusion scheme based on the log-Euclidean
metric. Summing up, our proposed anisotropic diffusion schemes show promising re-
sults on the given test images. Further work might examine the reconstruction proper-
ties of other tensor characteristics as well as the influence on so far heuristically chosen
parameters, e.g. the diffusivity function.
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