Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sparse Coding Neural Gas for the Separation of Noisy Overcomplete Sources

  • Conference paper
Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5163))

Included in the following conference series:

Abstract

We consider the problem of separating noisy overcomplete sources from linear mixtures, i.e., we observe N mixtures of M > N sparse sources. We show that the “Sparse Coding Neural Gas” (SCNG) algorithm [1] can be employed in order to estimate the mixing matrix. Based on the learned mixing matrix the sources are obtained by orthogonal matching pursuit. Using artificially generated data, we evaluate the influence of (i) the coherence of the mixing matrix, (ii) the noise level, and (iii) the sparseness of the sources with respect to the performance that can be achieved on the representation level. Our results show that if the coherence of the mixing matrix and the noise level are sufficiently small and the underlying sources are sufficiently sparse, the sources can be estimated from the observed mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Labusch, K., Barth, E., Martinetz, T.: Learning Data Representations with Sparse Coding Neural Gas. In: Verleysen, M. (ed.) Proceedings of the 16th European Symposium on Artificial Neural Networks, pp. 233–238. D-Side Publishers (2008)

    Google Scholar 

  2. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7(6), 1129–1159 (1995)

    Article  Google Scholar 

  3. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  4. Hyvarinen, A., Cristescu, R., Oja, E.: A fast algorithm for estimating overcomplete ica bases for image windows. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN 1999, vol. 2, pp. 894–899 (1999)

    Google Scholar 

  5. Lee, T.W., Lewicki, M., Girolami, M., Sejnowski, T.: Blind source separation of more sources than mixtures using overcomplete representations. IEEE Signal Processing Letters 6(4), 87–90 (1999)

    Article  Google Scholar 

  6. Lewicki, M.S., Sejnowski, T.J.: Learning Overcomplete Representations. Neural Computation 12(2), 337–365 (2000)

    Article  Google Scholar 

  7. Theis, F., Lang, E., Puntonet, C.: A geometric algorithm for overcomplete linear ICA. Neurocomputing 56, 381–398 (2004)

    Article  Google Scholar 

  8. Hyvärinen, A.: Gaussian moments for noisy independent component analysis. IEEE Signal Processing Letters 6(6), 145–147 (1999)

    Article  Google Scholar 

  9. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley-Interscience, Chichester (2001)

    Google Scholar 

  10. Pati, Y., Rezaiifar, R., Krishnaprasad, P.: Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Proceedings of the 27 th Annual Asilomar Conference on Signals, Systems (November 1993)

    Google Scholar 

  11. Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory 52(1), 6–18 (2006)

    Article  MathSciNet  Google Scholar 

  12. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  13. Rebollo-Neira, L., Lowe, D.: Optimized orthogonal matching pursuit approach. IEEE Signal Processing Letters 9(4), 137–140 (2002)

    Article  Google Scholar 

  14. Oja, E.: A simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267–273 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Martinetz, T., Berkovich, S., Schulten, K.: “Neural-gas” Network for Vector Quantization and its Application to Time-Series Prediction. IEEE-Transactions on Neural Networks 4(4), 558–569 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Labusch, K., Barth, E., Martinetz, T. (2008). Sparse Coding Neural Gas for the Separation of Noisy Overcomplete Sources. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87536-9_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87536-9_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87535-2

  • Online ISBN: 978-3-540-87536-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics