Abstract
We consider the problem of separating noisy overcomplete sources from linear mixtures, i.e., we observe N mixtures of M > N sparse sources. We show that the “Sparse Coding Neural Gas” (SCNG) algorithm [1] can be employed in order to estimate the mixing matrix. Based on the learned mixing matrix the sources are obtained by orthogonal matching pursuit. Using artificially generated data, we evaluate the influence of (i) the coherence of the mixing matrix, (ii) the noise level, and (iii) the sparseness of the sources with respect to the performance that can be achieved on the representation level. Our results show that if the coherence of the mixing matrix and the noise level are sufficiently small and the underlying sources are sufficiently sparse, the sources can be estimated from the observed mixtures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Labusch, K., Barth, E., Martinetz, T.: Learning Data Representations with Sparse Coding Neural Gas. In: Verleysen, M. (ed.) Proceedings of the 16th European Symposium on Artificial Neural Networks, pp. 233–238. D-Side Publishers (2008)
Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7(6), 1129–1159 (1995)
Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)
Hyvarinen, A., Cristescu, R., Oja, E.: A fast algorithm for estimating overcomplete ica bases for image windows. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN 1999, vol. 2, pp. 894–899 (1999)
Lee, T.W., Lewicki, M., Girolami, M., Sejnowski, T.: Blind source separation of more sources than mixtures using overcomplete representations. IEEE Signal Processing Letters 6(4), 87–90 (1999)
Lewicki, M.S., Sejnowski, T.J.: Learning Overcomplete Representations. Neural Computation 12(2), 337–365 (2000)
Theis, F., Lang, E., Puntonet, C.: A geometric algorithm for overcomplete linear ICA. Neurocomputing 56, 381–398 (2004)
Hyvärinen, A.: Gaussian moments for noisy independent component analysis. IEEE Signal Processing Letters 6(6), 145–147 (1999)
Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley-Interscience, Chichester (2001)
Pati, Y., Rezaiifar, R., Krishnaprasad, P.: Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Proceedings of the 27 th Annual Asilomar Conference on Signals, Systems (November 1993)
Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory 52(1), 6–18 (2006)
Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20(1), 33–61 (1998)
Rebollo-Neira, L., Lowe, D.: Optimized orthogonal matching pursuit approach. IEEE Signal Processing Letters 9(4), 137–140 (2002)
Oja, E.: A simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267–273 (1982)
Martinetz, T., Berkovich, S., Schulten, K.: “Neural-gas” Network for Vector Quantization and its Application to Time-Series Prediction. IEEE-Transactions on Neural Networks 4(4), 558–569 (1993)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Labusch, K., Barth, E., Martinetz, T. (2008). Sparse Coding Neural Gas for the Separation of Noisy Overcomplete Sources. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87536-9_81
Download citation
DOI: https://doi.org/10.1007/978-3-540-87536-9_81
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87535-2
Online ISBN: 978-3-540-87536-9
eBook Packages: Computer ScienceComputer Science (R0)