Nothing Special   »   [go: up one dir, main page]

Skip to main content

Blind Source Separation Based on Dictionary Learning: A Singularity-Aware Approach

  • Chapter
  • First Online:
Blind Source Separation

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

This chapter surveys recent works in applying sparse signal processing techniques, in particular, dictionary learning algorithms to solve the blind source separation problem. For the proof of concepts, the focus is on the scenario where the number of mixtures is not less than that of the sources. Based on the assumption that the sources are sparsely represented by some dictionaries, we present a joint source separation and dictionary learning algorithm (SparseBSS) to separate the noise corrupted mixed sources with very little extra information. We also discuss the singularity issue in the dictionary learning process, which is one major reason for algorithm failure. Finally, two approaches are presented to address the singularity issue.

The first two authors made equal contribution to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that in this chapter \(\varvec{P}_{k}\) is defined as a patching operator for image sources. The patching operator for audio sources can be similarly defined as well.

  2. 2.

    An illustration: take \(\varvec{Y},\,\varvec{D},\,\varvec{X}\) as scalars. If \(\varvec{Y}\ne 0\), there exists a singular point at \(\varvec{D}=0\) on \(f\left( \varvec{D}\right) =\underset{\varvec{X}}{\mathrm{min}}\left\| \varvec{Y}-\varvec{D}\varvec{X}\right\| _{F}^{2}\), where \(\varvec{X}\) can be assigned as any real number.

  3. 3.

    For the BMMCA test, a better performance was demonstrated in [14]. We point out that here a different true mixing matrix is used. And furthermore, in our tests the patches are taken with a 50 % overlap (by shifting 4 pixels from the current patch to the next) while in [14] the patches are taken by shifting only one pixel from the current patch to the next.

References

  1. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)

    Google Scholar 

  2. Bell, J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995)

    Article  Google Scholar 

  3. Gaeta, M., Lacoume, J.L.: Source separaion without prior knowledge: the maximum likelihood solution. In: Proceedings of European Signal Processing Conference, pp. 621–624 (1990)

    Google Scholar 

  4. Belouchrani, A., Cardoso, J.F.: Maximum likelihood source separation for discrete sources. In: Proceedings of European Signal Processing Conference, pp. 768–771 (1994)

    Google Scholar 

  5. Bronstein, M., Zibulevsky, M., Zeevi, Y.: Sparse ica for blind separation of transmitted and reflected images. Int. J. Imaging Sci. Technol. 15, 84–91 (2005)

    Article  Google Scholar 

  6. Gribonval, R., Lesage, S.: A survey of sparse component analysis for blind source separation: principles, perspectives, and new challenges. In: Proceedings of European Symposium on Artificial, Neural Networks, pp. 323–330 (2006)

    Google Scholar 

  7. Jourjine, A., Rickard, S., Yilmaz, O.: Blind separation of disjoint orthogonal signals: demixing N sources from 2 mixtures. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2985–2988 (2000)

    Google Scholar 

  8. Starck, J., Elad, M., Donoho, D.: Redundant multiscale transforms and their application for morphological component analysis. Adv. Imaging Electron. Phys. 132, 287–348 (2004)

    Article  Google Scholar 

  9. Bobin, J., Moudden, Y., Starck, J., Elad, M.: Morphological diversity and source separation. IEEE Sign. Process. Lett. 13(7), 409–412 (2006)

    Article  Google Scholar 

  10. Bobin, J., Starck, J., Fadili, J., Moudden, Y.: Sparsity and morphological diversity in blind source separation. IEEE Trans. Image Process. 16(11), 2662–2674 (2007)

    Article  MathSciNet  Google Scholar 

  11. Eladl, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, 1st edn. Springer, New York (2010). Incorporated

    Book  Google Scholar 

  12. Peyré, G., Fadili, J., Starck, J.-L.: Learning adapted dictionaries for geometry and texture separation. In: Proceedings of SPIE Wavelet XII, vol. 6701, p. 67011T (2007)

    Google Scholar 

  13. Xu, T., Wang, W., Dai, W.: Sparse coding with adaptive dictionary learning for underdetermined blind speech separation. Speech Commun. 55(3), 432–450 (2013)

    Article  Google Scholar 

  14. Abolghasemi, V., Ferdowsi, S., Sanei, S.: Blind separation of image sources via adaptive dictionary learning. IEEE Trans. Image Process. 21(6), 2921–2930 (2012)

    Article  MathSciNet  Google Scholar 

  15. Zhao, X., Xu, T., Zhou, G., Wang, W., Dai, W.: Joint image separation and dictionary learning. In: Accepted by 18th International Conference on Digital Signal Processing, Santorini, Greece (2013)

    Google Scholar 

  16. Dai, W., Xu, T., Wang, W.: Simultaneous codeword optimization (simco) for dictionary update and learning. IEEE Trans. Sign. Process. 60(12), 6340–6353 (2012)

    Article  MathSciNet  Google Scholar 

  17. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, pp. 40–44 (1993)

    Google Scholar 

  18. Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 55(5), 2230–2249 (2009)

    Article  MathSciNet  Google Scholar 

  19. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  20. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1999)

    Article  MathSciNet  Google Scholar 

  21. Hildebrand, F.B.: Advanced Calculus for Applications. Prentice-Hall, Upper Saddle River (1976)

    Google Scholar 

  22. Engan, K., Aase, S.O., Husoy, J.H.: Method of optimal directions for frame design. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 2443–2446 (1999)

    Google Scholar 

  23. Gorodnitsky, I.F., George, J.S., Rao, B.D.: Neuromagnetic source imaging with focuss: a recursive weighted minimum norm algorithm. Electroencephalogr. Clin. Neurophysiol. 95, 231–251 (1995)

    Article  Google Scholar 

  24. Engan, K., Skretting, K., Husoy, J.: Family of iterative is-based dictionary learning algorithms, ils-dla, for sparse signal representation. Digit. Sign. Process. 17(1), 32–49 (2007)

    Article  Google Scholar 

  25. Skretting, K., Engan, K.: Recursive least squares dictionary learning algorithm. IEEE Trans. Sign. Process. 58(4), 2121–2130 (2010)

    Article  MathSciNet  Google Scholar 

  26. Aharon, M., Elad, M., Brucketein, A.: K-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sign. Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  27. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11, 19–60 (2010)

    MATH  MathSciNet  Google Scholar 

  28. Gribonval, R., Schnass, K.: Dictionary identification: sparse matrix-factorisation via l1-minimisation. CoRR, vol. abs/0904.4774 (2009)

    Google Scholar 

  29. Geng, Q., Wang, H., Wright, J.: On the local correctness of l1 minimization for dictionary learning. CoRR, vol. abs/1101.5672 (2011)

    Google Scholar 

  30. Jenatton, R., Gribonval, R., Bach, F.: Local stability and robustness of sparse dictionary learning in the presence of noise. CoRR (2012)

    Google Scholar 

  31. Yaghoobi, M., Blumensath, T., Davies, M.E.: Dictionary learning for sparse approximations with the majorization method. IEEE Trans. Sign. Process. 57(6), 2178–2191 (2009)

    Article  MathSciNet  Google Scholar 

  32. Zhao, X., Zhou, G., Dai, W.: Dictionary learning: a singularity problem and how to handle it (in preparation)

    Google Scholar 

  33. Zhao, X., Zhou, G., Dai, W.: Smoothed SimCO for dictionary learning: handling the singularity issue. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (2013)

    Google Scholar 

  34. Candes, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non-Gaussian signals. IEE Proc. 140(6), 362–370 (1993)

    Google Scholar 

  36. Vincent, E., Gribonval, R., Fevotte, C.: Performance measurement in blind audio source separation. IEEE Trans. Audio Speech Lang. Process. 14(4), 1462–1469 (2006)

    Article  Google Scholar 

  37. Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochen Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, X., Zhou, G., Dai, W., Wang, W. (2014). Blind Source Separation Based on Dictionary Learning: A Singularity-Aware Approach. In: Naik, G., Wang, W. (eds) Blind Source Separation. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55016-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55016-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55015-7

  • Online ISBN: 978-3-642-55016-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics