Abstract
We present the first 7/8-approximation algorithm for the maximum traveling salesman problem with triangle inequality. Our algorithm is deterministic. This improves over both the randomized algorithm of Hassin and Rubinstein [2] with expected approximation ratio of 7/8 − O(n − 1/2) and the deterministic (7/8 − O(n − 1/3))-approximation algorithm of Chen and Nagoya [1].
In the new algorithm, we extend the approach of processing local configurations using so-called loose-ends, which we introduced in [4].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, Z.-Z., Nagoya, T.: Improved approximation algorithms for metric max TSP. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 179–190. Springer, Heidelberg (2005)
Hassin, R., Rubinstein, S.: A 7/8-approximation algorithm for metric Max TSP. Inf. Process. Lett. 81(5), 247–251 (2002)
Kostochka, A.V., Serdyukov, A.I.: Polynomial algorithms with the estimates 3/4 and 5/6 for the traveling salesman problem of the maximum (in Russian). Upravlyaemye Sistemy 26, 55–59 (1985)
Kowalik, Ł., Mucha, M.: 35/44-approximation for asymmetric maximum TSP with triangle inequality. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 589–600. Springer, Heidelberg (2007)
Serdyukov, A.I.: The traveling salesman problem of the maximum (in Russian). Upravlyaemye Sistemy 25, 80–86 (1984)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kowalik, Ł., Mucha, M. (2008). Deterministic 7/8-Approximation for the Metric Maximum TSP. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2008 2008. Lecture Notes in Computer Science, vol 5171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85363-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-85363-3_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85362-6
Online ISBN: 978-3-540-85363-3
eBook Packages: Computer ScienceComputer Science (R0)