Nothing Special   »   [go: up one dir, main page]

Skip to main content

Search Techniques for Rational Polynomial Orders

  • Conference paper
Intelligent Computer Mathematics (CICM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5144))

Included in the following conference series:

Abstract

Polynomial interpretations are a standard technique used in almost all tools for proving termination of term rewrite systems (TRSs) automatically. Traditionally, one applies interpretations with polynomials over the naturals. But recently, it was shown that interpretations with polynomials over the rationals can be significantly more powerful. However, searching for such interpretations is considerably more difficult than for natural polynomials. Moreover, while there exist highly efficient SAT-based techniques for finding natural polynomials, no such techniques had been developed for rational polynomials yet. In this paper, we tackle the two main problems when applying rational polynomial interpretations in practice: (1) We develop new criteria to decide when to use rational instead of natural polynomial interpretations. (2) Afterwards, we present SAT-based methods for finding rational polynomial interpretations and evaluate them empirically.

C. Fuhs, J. Giesl, C. Otto, and P. Schneider-Kamp were supported by the DAAD under grant D/06/12785 and by the DFG under grant GI 274/5-2. S. Lucas and R. Navarro-Marset were partially supported by the EU (FEDER) and the Spanish MEC, under grants TIN 2007-68093-C02-02 and HA 2006-0007. R. Navarro-Marset was partially supported by the Spanish MEC under FPU grant AP2006-026.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Contejean, E., Marché, C., Monate, B., Urbain, X.: CiME, http://cime.lri.fr

  3. Contejean, E., Marché, C., Tomás, A.P., Urbain, X.: Mechanically proving termination using polynomial interpretations. Journal of Automated Reasoning 34(4), 325–363 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dershowitz, N.: Termination of rewriting. Journal of Symbolic Computation 3, 69–116 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Endrullis, J.: Jambox, http://joerg.endrullis.de

  6. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 574–588. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Fuhs, C., Giesl, J., Middeldorp, A., Thiemann, R., Schneider-Kamp, P., Zankl, H.: SAT solving for termination analysis with polynomial interpretations. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Gebhardt, A., Hofbauer, D., Waldmann, J.: Matrix Evolutions. In: Proc. WST 2007 (2007)

    Google Scholar 

  9. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: Combining techniques for automated termination proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005)

    Google Scholar 

  10. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the DP framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Information and Computation 199(1,2), 172–199 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hirokawa, N., Middeldorp, A.: Tyrolean Termination Tool: Techniques and features. Information and Computation 205(4), 474–511 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hong, H., Jakuš, D.: Testing positiveness of polynomials. Journal of Automated Reasoning 21(1), 23–38 (1998)

    Article  MathSciNet  Google Scholar 

  15. Lucas, S.: MU-TERM: a tool for proving termination of context-sensitive rewriting. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 200–209. Springer, Heidelberg (2004)

    Google Scholar 

  16. Lucas, S.: Polynomials over the reals in proofs of termination: From theory to practice. RAIRO Theoretical Informatics and Applications 39(3), 547–586 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lucas, S.: On the relative power of polynomials with real, rational, and integer coefficients in proofs of termination of rewriting. Applicable Algebra in Engineering, Communication and Computing 17(1), 49–73 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lucas, S.: Practical use of polynomials over the reals in proofs of termination. In: Proc. PPDP 2007, pp. 39–50. ACM Press, New York (2007)

    Google Scholar 

  19. Marché, C., Zantema, H.: The termination competition. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 303–313. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Thiemann, R., Middeldorp, A.: Innermost termination of rewrite systems by labeling. In: Proc. WRS 2007. ENTCS 204, pp. 3–19 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Serge Autexier John Campbell Julio Rubio Volker Sorge Masakazu Suzuki Freek Wiedijk

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fuhs, C., Navarro-Marset, R., Otto, C., Giesl, J., Lucas, S., Schneider-Kamp, P. (2008). Search Techniques for Rational Polynomial Orders. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds) Intelligent Computer Mathematics. CICM 2008. Lecture Notes in Computer Science(), vol 5144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85110-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85110-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85109-7

  • Online ISBN: 978-3-540-85110-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics