Abstract
We present a new method for automatically proving termination of term rewriting. It is based on the well-known idea of interpretation of terms where every rewrite step causes a decrease, but instead of the usual natural numbers we use vectors of natural numbers, ordered by a particular non-total well-founded ordering. Function symbols are interpreted by linear mappings represented by matrices. This method allows to prove termination and relative termination. A modification of the latter in which strict steps are only allowed at the top, turns out to be helpful in combination with the dependency pair transformation.
By bounding the dimension and the matrix coefficients, the search problem becomes finite. Our implementation transforms it to a Boolean satisfiability problem (SAT), to be solved by a state-of-the-art SAT solver. Our implementation performs well on the Termination Problem Data Base: better than 5 out of 6 tools that participated in the 2005 termination competition in the category of term rewriting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)
Termination Competition. http://www.lri.fr/~marche/termination-competition/
Eén, N., Biere, A.: Effective preprocessing in sat through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)
Endrullis, J.: Jambox: Automated termination proofs for string rewriting (2005), http://joerg.endrullis.de/
Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: Combining techniques for automated termination proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005)
Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination of higher-order functions. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 216–231. Springer, Heidelberg (2005)
Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated termination proofs with AProVE. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 210–220. Springer, Heidelberg (2004)
Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer, Heidelberg (2004)
Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Information and Computation 199, 172–199 (2005)
Hirokawa, N., Middeldorp, A.: Tyrolean termination tool. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 175–184. Springer, Heidelberg (2005)
Hofbauer, D., Waldmann, J.: Proving termination with matrix interpretations. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, Springer, Heidelberg (2006)
Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference DAC 2001, pp. 530–535. ACM Press, New York (2001)
Waldmann, J.: Matchbox: A tool for match-bounded string rewriting. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 85–94. Springer, Heidelberg (2004)
Zantema, H.: Termination of term rewriting: Interpretation and type elimination. Journal of Symbolic Computation 17, 23–50 (1994)
Zantema, H.: Termination. In: Term Rewriting Systems, by Terese, pp. 181–259. Cambridge University Press, Cambridge (2003)
Zantema, H.: Reducing right-hand sides for termination. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 173–197. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Endrullis, J., Waldmann, J., Zantema, H. (2006). Matrix Interpretations for Proving Termination of Term Rewriting. In: Furbach, U., Shankar, N. (eds) Automated Reasoning. IJCAR 2006. Lecture Notes in Computer Science(), vol 4130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11814771_47
Download citation
DOI: https://doi.org/10.1007/11814771_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37187-8
Online ISBN: 978-3-540-37188-5
eBook Packages: Computer ScienceComputer Science (R0)