Abstract
In the field of 3D model retrieval, the combination of different kinds of shape feature is a promising way to improve retrieval performance. And the efficient categorization of 3D models is critical for organizing models. The paper proposes a combination method, which automatically decides the fixed weight of different shape features. Based on the combined shape feature, the paper applies the cluster analysis technique to efficiently categorize 3D models according to their shape. The standard 3D model database, Princeton Shape Benchmark, is adopted in experiment and our method shows good performance not only in improving retrieval performance but also in categorization.
Chapter PDF
Similar content being viewed by others
References
Funkhouser, T., et al.: A Search Engine for 3D Models. ACM Transactions on Graphics 22(1), 85–105 (2003)
Yang, Y., Li, H., Zhu, Q.: Content-Based 3D Model Retrieval: A Survey. Chinese Journal of Computer 27(10), 1298–1310 (2004)
Cui, C., Shi, J.: Analysis of Feature Extraction in 3D Model Retrieval. Journal of Computer-Aided Design & Computer Graphics 16(7), 882–889 (2004)
Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton Shape Benchmark. In: Proceedings of the Shape Modeling International 2004 (SMI’04), Genova, Italy, June 2004, pp. 388–399 (2004)
Atmosukarto, I., Leow, W.K., Huang, Z.: Feature Combination and Relevance Feedback for 3D Model Retrieval. In: The 11th International Conference on Multi Media Modeling (MMM 2005), Melbourne, Australia, 12-14 January 2005, pp. 334–339. IEEE Computer Society Press, Los Alamitos (2005)
Ohbuchi, R., Hata, Y.: Combining Multiresolution Shape Descriptors for Effective 3D Similarity Search. In: Proc. WSCG 2006, Plzen, Czech Republic (2006)
Atmosukarto, I., Leow, W.K., Huang, Z.: Feature Combination and Relevance Feedback for 3D Model Retrieval. In: Proceedings of the 11th International Multimedia Modelling Conference (2005)
Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Reading (1999)
Pelleg, D., Moore, A.: X-means: Extending K-means with Efficient Estimation of the Number of Clusters. In: Proc. 2000 Int. Conf. on Data Mining (2000)
Lv, T.-y., Xing, Y.-h., Huang, S.-b., Wang, Z.-x., Zuo, W.-l.: An Auto-stopped Hierarchical Clustering Algorithm for Analyzing 3D Model Database. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 601–608. Springer, Heidelberg (2005)
Heczko, M., Keim, D., Saupe, D., Vranic, D.: Methods for similarity search on 3D databases (In German). Datenbank-Spektrum 2(2), 54–63 (2002)
Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Proc. Models for the Perception of Speech and Visual Form, November 1967, pp. 362–380. MIT Press, Cambridge (1967)
Kazhdan, M., Funkhouser, T.: Harmonic 3D shape matching [A]. In: Computer Graphics Proceedings Annual Conference Series, ACM SIGGRAPH Technical Sketch, San Autonio, Texas (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Lv, T., Liu, G., Pang, J., Wang, Z. (2007). Studies on Shape Feature Combination and Efficient Categorization of 3D Models. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds) Computational Science – ICCS 2007. ICCS 2007. Lecture Notes in Computer Science, vol 4488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72586-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-72586-2_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72585-5
Online ISBN: 978-3-540-72586-2
eBook Packages: Computer ScienceComputer Science (R0)