Nothing Special   »   [go: up one dir, main page]

Skip to main content

Classifying 3D Models Based on Transcending Local Features

  • Conference paper
  • First Online:
Advances in Engineering Research and Application (ICERA 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 104))

Included in the following conference series:

  • 991 Accesses

Abstract

Classifying 3D models is an essential task for 3D industry as it organizes objects according to categories, which helps searching 3D models perform more quickly. Many features and a suitable classifier have been used to improve classifying. However, it takes a long time for both extracting features and classifying 3D models. In this paper, a small set of transcending local features which are maximum distances from points in local regions to the center of 3D model is proposed. Then a Support Vector Machine is selected to classify 3D models based on data type of features and advantages of Support Vector Machine. The experiments are conducted on benchmark databases in Shape Retrieval Contest 2010. The results show that the approach employed to classify 3D models in an acceptable responding time of real applications is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, Z., Huang, Q., Karthik, R.: 3D object classification via spherical projections. In: International Conference on 3D Vision, pp. 566–574 (2017)

    Google Scholar 

  2. Shu, Z., Xin, S., Xu, H., Kavan, L., Wang, P., Liu, L.: 3D model classification via Principal Thickness Images. Comput. Aided Des. 78, 199–208 (2016)

    Article  Google Scholar 

  3. Leng, B., Du, C., Guo, S., Zhang, X., Xiong, Z.: A powerful 3D model classification mechanism based on fusing multi-graph. Neurocomputing 168, 761–769 (2015)

    Article  Google Scholar 

  4. Barra, V., Biasotti, S.: 3D shape retrieval and classification using multiple kernel learning on extended Reeb graphs. Vis. Comput. 30(11), 1247–1259 (2014)

    Article  Google Scholar 

  5. Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3-D object retrieval and recognition with hypergraph analysis. IEEE Trans. Image Process. 21(9), 4290–4303 (2012)

    Article  MathSciNet  Google Scholar 

  6. Foliguet, S.P., Jordan, M., Najman, L., Cousty, J.: Artwork 3D model database indexing and classification. Pattern Recogn. 44, 588–597 (2011)

    Article  Google Scholar 

  7. Kassimi, A., Beqqali, O.E.: 3D model classification and retrieval based on semantic and ontology. Int. J. Comput. Sci. 8(5), 108 (2011)

    Google Scholar 

  8. Li, Z., Wang, D., Li, B., Zhong, L.: 3D model classification using salient features for content representation. In: Sixth International Conference on Natural Computation, vol. 7, pp. 3541–3545 (2010)

    Google Scholar 

  9. He, Y., Tang, Y.Y.: Classification of 3D models for the 3D animation environments. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 3786–3791 (2009)

    Google Scholar 

  10. Siddiqi, K., Zhang, J., Macrini, D., Shokoufandeh, A., Bouix, S., Dickinson, S.: Retrieving articulated 3-D models using medial surfaces. Mach. Vis. Appl. 19, 261–275 (2008)

    Article  Google Scholar 

  11. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Calculus of non-rigid surfaces for geometry and texture manipulation. IEEE Trans. Vis. Comput. Graph. 13(5), 902–913 (2007)

    Article  Google Scholar 

  12. Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

Download references

Acknowledgment

This work has received support from the project “T2019-07-09” funded by Thai Nguyen University of Information Technology and Communication, Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nong Thi Hoa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Van Tao, N., Hoa, N.T. (2020). Classifying 3D Models Based on Transcending Local Features. In: Sattler, KU., Nguyen, D., Vu, N., Tien Long, B., Puta, H. (eds) Advances in Engineering Research and Application. ICERA 2019. Lecture Notes in Networks and Systems, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-030-37497-6_23

Download citation

Publish with us

Policies and ethics