Nothing Special   »   [go: up one dir, main page]

Skip to main content

Clustering in a Fixed Manifold to Detect Groups of Genes with Similar Expression Patterns

  • Conference paper
Bioinformatics Research and Development (BIRD 2008)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 13))

Included in the following conference series:

  • 734 Accesses

Abstract

Clustering genes into groups that exhibit similar expression patterns is one of the most fundamental issues in microarray data analysis. In this paper, we present a normalized Expectation-Maximization (EM) approach for the problem of gene-based clustering. The normalized EM clustering also follows the framework of generative clustering models but for the data in a fixed manifold. We illustrate the effectiveness of the normalized EM on two real microarray data sets by comparing its clustering results with the ones produced by other related clustering algorithms. It is shown that the normalized EM performs better than the related algorithms in term of clustering outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lockhart, D., Dong, H., Byrne, M., Follettie, M., Gallo, M., Chee, M., Mittmann, M., Wang, C., Kobayashi, M., Horton, H., Brown, P.: Expression monitoring by hybridization to high density oligonucleotide arrays. Nature Biotechnology 14, 1675–1680 (1996)

    Article  Google Scholar 

  2. Schena, M., Shalon, D., Davis, R., Brown, P.: Quantitative monitoring of gene expression patterns with a DNA microarray. Science 210, 467–470 (1995)

    Article  Google Scholar 

  3. Shalon, D., Smith, S., Brown, P.: A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Research 6, 639–645 (1996)

    Article  Google Scholar 

  4. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. In: Proceedings of the National Academy of Sciences of the United States of America (1998)

    Google Scholar 

  5. Iyer, V., Eisen, M., Ross, D., Schuler, G., Moore, T., Lee, J., Trent, J., Staudt, L., Hudson, J., Boguski, M., Lashkari, D., Shalon, D., Botstein, D., Brown, P.: The transcriptional program in response of human fibroblasts to serum. Science 283, 83–87 (1999)

    Article  Google Scholar 

  6. Wen, X., Fuhrman, S., Michaels, G.S., Carr, D.B., Smith, S., Barker, J.L., Somogyi, R.: Large-scale temporal gene expression mapping of central nervous system development. The national academy of sciences, 334–339 (January 1998)

    Google Scholar 

  7. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E., Golub, T.: Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. In: Proceedings of the National Academy of Sciences of the United States of America, pp. 2097–2912 (1999)

    Google Scholar 

  8. Smet, F., Mathys, J., Marchal, K., Thijs, G., Moor, B., Moreau, Y.: Adaptive quality-based clustering of gene expresion profiles. Bioinformatics 18(5), 735–746 (2002)

    Article  Google Scholar 

  9. Tavazoie, S., Hughes, J., Campbell, M., Cho, R., Church, G.: Systematic determination of genetic network architechture. Nature Genetics 22, 281–285 (1999)

    Article  Google Scholar 

  10. Tseng, G.: Penalized and weighted k-means for clustering with scattered objects and prior information in high-throughput biological data. Bioinformatics 23(17), 2247–2255 (2007)

    Article  Google Scholar 

  11. Sharan, R., Shamir, R.: Click: A clustering algorithm with applications to gene expression analysis. In: Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology (ISMB), pp. 307–316 (2000)

    Google Scholar 

  12. Xu, Y., Olman, V., Xu, D.: Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees. Bioinformatics 17(4), 309–318 (2001)

    Article  Google Scholar 

  13. Ghosh, D., Chinnaiyan, A.M.: Mixture modelling of gene expression from microarray experiments. Bioinformatics 18(2), 275–286 (2002)

    Article  Google Scholar 

  14. McLachlan, G., Bean, R., Peel, D.: A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 18(3), 413–422 (2002)

    Article  Google Scholar 

  15. Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E., Ruzzo, W.L.: Model-based clustering and data transformations for gene expression data. Bioinformatics 17, 977–987 (2001)

    Article  Google Scholar 

  16. Dhillon, I., Modha, D.: Concept decompositions for large sparse text data using clustering. Machine Learning 42(1), 143–175 (2001)

    Article  MATH  Google Scholar 

  17. Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.: Clustering on the unit hypersphere using von Mises-Fisher distributions. Journal of Machine Learning Research 6, 1345–1382 (2005)

    MathSciNet  Google Scholar 

  18. Celeux, G., Govaert, G.: Gaussian parsimonious clustering models. Pattern Recognition 28(5), 781–793 (1995)

    Article  Google Scholar 

  19. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood for incomplete data via the EM algorithm. Journal of Royal Stastistical Society 29, 1–38 (1977)

    MathSciNet  Google Scholar 

  20. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M., Brown, P., Bostein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular biology of the cell 9, 3273–3297 (1998)

    Google Scholar 

  21. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2, 193–218 (1985)

    Article  Google Scholar 

  22. Fraley, C., Raftery, A.: Mclust: software for model based cluster analysis. Journal of Classification 16, 297–306 (1999)

    Article  MATH  Google Scholar 

  23. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Trans. on Systems, Man and Cybertics 28, 301–315 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mourad Elloumi Josef Küng Michal Linial Robert F. Murphy Kristan Schneider Cristian Toma

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Phuong, N.M., Tuan, H.D. (2008). Clustering in a Fixed Manifold to Detect Groups of Genes with Similar Expression Patterns. In: Elloumi, M., Küng, J., Linial, M., Murphy, R.F., Schneider, K., Toma, C. (eds) Bioinformatics Research and Development. BIRD 2008. Communications in Computer and Information Science, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70600-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70600-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70598-7

  • Online ISBN: 978-3-540-70600-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics