Abstract
Analysis of gene expression data obtained from microarray experiments is helpful for various biological purposes such as identifying Differentially Expressed genes, disease classification, predicting survival rate of patients etc. However, data from microarray experiments come with less sample size and thus have limited statistical power for any analysis. To overcome this problem, researchers are now relying on a more powerful technique called meta-analysis, an integrated analysis of existing data from different but related independent studies. Microarray data reveal that genes are normally expressed in related functional pattern, which suggests using clustering as an alternative technique to group genes into relatively homogenous clusters such as Differentially Expressed and Non-Differentially Expressed. In this paper, we explore k-Means Clustering technique to perform meta-analysis of gene expression data for finding Differentially Expressed genes. Comparative analysis of k-Means Clustering technique is performed, and the results are validated by various statistical meta-analysis techniques, which prove clustering as a robust alternative technique for meta-analysis of gene expression data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Scheetz TE, Kim K-YA, Swiderski RE, Philp AR, Braun TA, Knudtson KL, Dorrance AM, DiBona GF, Huang J, Casavant TL, Sheffield VC, Stone EM (2006) Regulation of gene expression in the mammalian eye and its relevance to eye disease. Proc. Natl. Acad. Sci. U. S. A. 103(13):14429–14434
Li J, Tseng GC (2011) An adaptively weighted statistic for detecting differential gene expression when combining multiple transcriptomic studies. Ann. Appl. Stat. 5(2):9941019
Wang X, Kang DD, Shen K, Song C, Lu S, Chang LC, Liao SG, Huo Z, Tang S, Ding Y, Kaminski N, Sibille E, Lin Y, Li J, Tseng GC (2012) An r package suite for microarray meta-analysis in quality control, differentially expressed gene analysis and pathway enrichment detection. Bioinformatics 28(19):2534–2536
Sun H, Xing X, Li J, Zhou F, Chen Y, He Y, Li W, Wei G, Chang X (2013) Identification of gene fusions from human lung cancer mass spectrometry data. BMC Genomics 14(Suppl 8):S5
Zaravinos A, Lambrou GI, Boulalas I, Delakas D, Spandidos DA (2011) Identification of common differentially expressed genes in urinary bladder cancer, PLoS One 6(4)
Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96(12):6745–6750
Heyer LJ, Kruglyak S, Yooseph S (1999) Exploring expression data: identification and analysis of coexpressed genes exploring expression data: identification and analysis of coexpressed genes. (213):1106–1115
Lin IH, Chen DT, Chang YF, Lee YL, Su CH, Cheng C, Tsai YC, Ng SC, Chen HT, Lee MC, Chen HW, Suen SH, Chen YC, Liu TT, Chang CH, Hsu MT (2015) Hierarchical clustering of breast cancer methylomes revealed differentially methylated and expressed breast cancer genes. PLoS ONE 10(2):130
Fisher R, Fisher RA (1925) Statistical methods for research workers. Genesis Publishing, Oliver and Boyd, Edinburgh
Shashirekha HL, Wani AH (2016) ShinyMDE: shiny tool for microarray metaanalysis for differentially expressed gene detection. In: 2016 international conference on bioinformatics and systems biology (BSB), Allahabad, 2016, pp. 1–5. doi:10.1109/BSB.2016.7552152
Morissette L, Chartier S (2013) The k-means clustering technique: general considerations and implementation in Mathematica. Tutor. Quant. Methods Psychol 9(1):15–24
Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137
MacQueen JB (1967) K-means some methods for classification and analysis of multivariate observations. In: 5th Berkeley Symposium on mathematical statistics and probability, vol. 1(233), pp. 281–297
Forgy EW (1965) Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21:786–796
Stouffer SA (1949) A study of attitudes. Sci Am 180(5):11
Lu S, Li J, Song C, Shen K, Tseng GC (2010) Biomarker detection in the integration of multiple multi-class genomic studies. Bioinformatics 26(3):33340
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wani, A.H., Shashirekha, H.L. (2018). Clustering: A Novel Meta-Analysis Approach for Differentially Expressed Gene Detection. In: Guru, D., Vasudev, T., Chethan, H., Kumar, Y. (eds) Proceedings of International Conference on Cognition and Recognition . Lecture Notes in Networks and Systems, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-10-5146-3_12
Download citation
DOI: https://doi.org/10.1007/978-981-10-5146-3_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-5145-6
Online ISBN: 978-981-10-5146-3
eBook Packages: EngineeringEngineering (R0)