Nothing Special   »   [go: up one dir, main page]

Skip to main content

Statistical Analysis of Sample-Size Effects in ICA

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2007 (IDEAL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4881))

Abstract

Independent component analysis (ICA) solves the blind source separation problem by evaluating higher-order statistics, e.g. by estimating fourth-order moments. While estimation errors of the kurtosis can be shown to asymptotically decay with sample size according to a square-root law, they are subject to two further effects for finite samples. Firstly, errors in the estimation of kurtosis increase with the deviation from Gaussianity. Secondly, errors in kurtosis-based ICA algorithms increase when approaching the Gaussian case. These considerations allow us to derive a strict lower bound for the sample size to achieve a given separation quality, which we study analytically for a specific family of distributions and a particular algorithm (fastICA). We further provide results from simulations that support the relevance of the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, Mineola (1972)

    MATH  Google Scholar 

  2. Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems 8, 757–763 (1996)

    Google Scholar 

  3. Bai, J., Ng, S.: Tests for skewness, kurtosis, and normality for time series data. J. Business & Economic Statistics 23(1), 49–60 (2005)

    Article  MathSciNet  Google Scholar 

  4. Bethge, M.: Factorial coding of natural images: how effective are linear models in removing higher-order dependencies? J. Opt. Soc. Am. 23(6), 1253–1268 (2006)

    Article  MathSciNet  Google Scholar 

  5. Comon, P.: Independent component analysis - a new concept? Signal Processing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  6. Dodel, S., Herrmann, J.M., Geisel, T.: Comparison of temporal and spatial ica in fmri data analysis. In: ICA 2000. Proc. Second Int. Workshop on Independent Component Analysis and Blind Signal Separation, vol. 13, pp. 543–547 (2000)

    Google Scholar 

  7. Farvardin, N., Modestino, J.: Optimum quantizer performance for a class of non-gaussian memoryless sources. IEEE Trans. Inf. Theory IT-30, 485–497 (1984)

    Article  MathSciNet  Google Scholar 

  8. Hyvärinen, A., Karhunen, J., Oja, E.: Independent component analysis. John Wiley & Sons, Chichester (2001)

    Google Scholar 

  9. Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation 9, 1483–1492 (1997)

    Article  Google Scholar 

  10. Jutten, C., Hérault, J., Comon, P., Sorouchiary, E.: Blind separation of sources, parts I, II and III. Signal Processing 24, 1–29 (1991)

    Article  MATH  Google Scholar 

  11. Koldovský, Z., Tichavský, P., Oja, E.: Efficient variant of algorithm fastICA for independent component analysis attaining the Cramér-Rao lower bound. IEEE Transactions on Neural Networks 17(5), 1265–1277 (2006)

    Article  Google Scholar 

  12. MacCallum, R.C., Browne, M.W., Sugawara, H.M.: Power analysis and determination of sample size for covariance structure models. Psychological Methods 1(2), 130–149 (1996)

    Article  Google Scholar 

  13. Molgedey, L., Schuster, G.: Separation of a mixture of independent signals using time delayed correlations. Physical Review Letters 72(23), 3634–3637 (1994)

    Article  Google Scholar 

  14. Regalia, P.A., Kofidis, E.: Monotonic convergence of fixed-point algorithms for ICA. IEEE Transactions on Neural Networks 14(4), 943–949 (2003)

    Article  Google Scholar 

  15. Theis, F.J.: A new concept for separability problems in blind source separation. Neural Computation 16, 1827–1850 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hujun Yin Peter Tino Emilio Corchado Will Byrne Xin Yao

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herrmann, J.M., Theis, F.J. (2007). Statistical Analysis of Sample-Size Effects in ICA. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2007. IDEAL 2007. Lecture Notes in Computer Science, vol 4881. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77226-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77226-2_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77225-5

  • Online ISBN: 978-3-540-77226-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics