Nothing Special   »   [go: up one dir, main page]

Skip to main content

QuBE++: An Efficient QBF Solver

  • Conference paper
Formal Methods in Computer-Aided Design (FMCAD 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3312))

Included in the following conference series:

Abstract

In this paper we describe QuBE++, an efficient solver for Quantified Boolean Formulas (QBFs). To the extent of our knowledge, QuBE++ is the first QBF reasoning engine that uses lazy data structures both for unit clauses propagation and for pure literals detection. QuBE++ also features non-chronological backtracking and a branching heuristic that leverages the information gathered during the backtracking phase. Owing to such techniques and to a careful implementation, QuBE++ turns out to be an efficient and robust solver, whose performances exceed those of other state-of-the-art QBF engines, and are comparable with the best engines currently available on SAT instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Scholl, C., Becker, B.: Checking equivalence for partial implementations. In: 38th Design Automation Conference, DAC 2001 (2001)

    Google Scholar 

  2. Ayari, A., Basin, D.: Bounded model construction for monadic second-order logics. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 99–113. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Rintanen, J.: Constructing conditional plans by a theorem prover. Journal of Artificial Intelligence Research 10, 323–352 (1999)

    MATH  Google Scholar 

  4. Castellini, C., Giunchiglia, E., Tacchella, A.: Sat-based planning in complex domains: Concurrency, constraints and nondeterminism. Artificial Intelligence 147(1), 85–117 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Pan, G., Vardi, M.Y.: Optimizing a BDD-based modal solver. In: Proceedings of the 19th International Conference on Automated Deduction (2003)

    Google Scholar 

  6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi, M.Y.: Benefits of Bounded Model Checking at an Industrial Setting. In: Proc. of CAV. LNCS, Springer, Heidelberg (2001)

    Google Scholar 

  8. Abdulla, P.A., Bjesse, P., Eén, N.: Symbolic Reachability Analisys Based on SAT-Solvers. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 411–425. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Le Berre, D., Simon, L., Tacchella, A.: Challenges in the QBF arena: the SAT 2003 evaluation of QBF solvers. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 468–485. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  11. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5(7), 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gent, I., Giunchiglia, E., Narizzano, M., Rowley, A., Tachella, A.: Watched data structures for QBF solvers. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 348–355. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Giunchiglia, E., Narizzano, M., Tacchella, A.: Learning for quantified boolean logic satisfiability. In: Eighteenth National Conference on Artificial Intelligence (AAAI 2002), AAAI Press/MIT Press (2002)

    Google Scholar 

  14. Marques-Silva, J.P., Sakallah, K.A.: GRASP - A New Search Algorithm for Satisfiability. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design, November 1996, pp. 220–227 (1996)

    Google Scholar 

  15. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference (DAC 2001), pp. 530–535 (2001)

    Google Scholar 

  16. Giunchiglia, E., Maratea, M., Tacchella, A. (In)Effectiveness of Look-Ahead Techniques in a Modern SAT Solver. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 842–846. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability solver. In: Proceedings of International Conference on Computer Aided Design, ICCAD 2002 (2002)

    Google Scholar 

  18. Giunchiglia, E., Narizzano, M., Tacchella, A.: Backjumping for Quantified Boolean Logic Satisfiability. In: Seventeenth International Joint Conference on Artificial Intelligence (IJCAI 2001). Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  19. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in a Boolean satisfiability solver. In: International Conference on Computer-Aided Design (ICCAD 2001), pp. 279–285 (2001)

    Google Scholar 

  20. Bayardo Jr., R.J., Schrag, R.C.: Using CSP Look-Back Techniques to Solve Real-World SAT instances. In: Proc. of AAAI, pp. 203–208. AAAI Press, Menlo Park (1997)

    Google Scholar 

  21. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean Formulas satisfiability library, QBFLIB (2001), http://www.qbflib.org

  22. Letz, R.: Lemma and model caching in decision procedures for quantified boolean formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 160–175. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. Simon, L., Le Berre, D., Hirsch, E.A.: The SAT2002 Competition (2002)

    Google Scholar 

  24. Simon, L., Le Berre, D.: The essentials of SAT 2003 Competition. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 452–467. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giunchiglia, E., Narizzano, M., Tacchella, A. (2004). QuBE++: An Efficient QBF Solver. In: Hu, A.J., Martin, A.K. (eds) Formal Methods in Computer-Aided Design. FMCAD 2004. Lecture Notes in Computer Science, vol 3312. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30494-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30494-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23738-9

  • Online ISBN: 978-3-540-30494-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics