Abstract
Counting the solutions of symbolic encodings is an intriguing computational problem with many applications. In the field of propositional satisfiability (SAT) solving, for example, many algorithms and tools have emerged to tackle the counting problem. For quantified Boolean formulas (QBFs), an extension of SAT with quantifiers used to compactly encode and solve problems of formal verification, synthesis, planning, etc., practical solution counting has not been considered yet.
We present the first practical counting algorithm for top-level solutions. We prove soundness of our algorithm for true and false formulas and show how to implement it with recent QBF solving technology. Our evaluation of benchmarks from the recent QBF competition gives promising results for this difficult problem.
This work has been supported by the Austrian Science Fund (FWF) under projects W1255-N23 and P31571-N32, the LIT AI Lab funded by the State of Upper Austria.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aziz, R.A., Chu, G., Muise, C., Stuckey, P.: \(\#\exists \)SAT: projected model counting. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 121–137. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_10
Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2005. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30557-6_14
Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verification of neural networks and its security applications. In: CCS, pp. 1249–1264. ACM (2019)
Bayardo Jr., R., Pehoushek, J.D.: Counting models using connected components. In: AAAI/IAAI, pp. 157–162. AAAI Press/The MIT Press (2000)
Becker, B., Ehlers, R., Lewis, M., Marin, P.: ALLQBF solving by computational learning. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 370–384. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-6_29
Bendík, J., Černá, I.: Replication-guided enumeration of minimal unsatisfiable subsets. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 37–54. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58475-7_3
Bendík, J., Cerna, I.: Rotation based MSS/MCS enumeration. In: LPAR. EPIC, vol. 73, pp. 120–137. EasyChair (2020)
Biondi, F., Enescu, M.A., Heuser, A., Legay, A., Meel, K.S., Quilbeuf, J.: Scalable approximation of quantitative information flow in programs. In: VMCAI 2018. LNCS, vol. 10747, pp. 71–93. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73721-8_4
Birnbaum, E., Lozinskii, E.L.: The good old Davis-Putnam procedure helps counting models. J. Artif. Intell. Res. 10, 457–477 (1999)
Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approximate counting for probabilistic inference: From linear to logarithmic SAT calls. In: IJCAI, pp. 3569–3576. IJCAI/AAAI Press (2016)
Chakraborty, S., Meel, K.S., Vardi, M.Y.: Chapter 26. Approximate model counting. In: Handbook of satisfiability, frontiers in artificial intelligence and applications, vol. 336, pp. 1015–1045. IOS Press (2021)
Diptarama, Yoshinaka, R., Shinohara, A.: QBF encoding of generalized tic-tac-toe. In: QBF@SAT. CEUR Workshop Proceedings, vol. 1719, pp. 14–26. CEUR-WS.org (2016)
Dubois, O.: Counting the number of solutions for instances of satisfiability. Theor. Comput. Sci. 81(1), 49–64 (1991)
Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set enumeration. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 136–148. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72200-7_13
Giunchiglia, E., Narizzano, M., Tacchella, A.: Learning for quantified Boolean logic satisfiability. In: AAAI/IAAI, pp. 649–654. AAAI Press/The MIT Press (2002)
Gomes, C.P., Sabharwal, A., Selman, B.: Chapter 25. Model counting. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 993–1014. IOS Press, Amsterdam, Netherlands (2021)
Hemaspaandra, L.A., Vollmer, H.: The satanic notations: counting classes beyond #P and other definitional adventures. SIGACT News 26(1), 2–13 (1995)
Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for SAT and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015)
Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent sets. In: KR, pp. 358–366. AAAI Press (2008)
Jin, H.S., Han, H.J., Somenzi, F.: Efficient conflict analysis for finding all satisfying assignments of a Boolean circuit. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 287–300. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1_19
Ladner, R.E.: Polynomial space counting problems. SIAM J. Comput. 18(6), 1087–1097 (1989)
Letz, R.: Lemma and model caching in decision procedures for quantified Boolean formulas. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 160–175. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45616-3_12
Li, B., Hsiao, M.S., Sheng, S.: A novel SAT all-solutions solver for efficient preimage computation. In: DATE, pp. 272–279. IEEE Computer Society (2004)
Lonsing, F., Egly, U.: DepQBF 6.0: a search-based qbf solver beyond traditional QCDCL. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 371–384. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5_23
McAreavey, K., Liu, W., Miller, P.: Computational approaches to finding and measuring inconsistency in arbitrary knowledge bases. Int. J. Approx. Reason. 55(8), 1659–1693 (2014)
Möhle, S., Biere, A.: Combining conflict-driven clause learning and chronological backtracking for propositional model counting. In: GCAI. EPIC, vol. 65, pp. 113–126. EasyChair (2019)
Morgado, A., Liffiton, M., Marques-Silva, J.: MaxSAT-based MCS enumeration. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 86–101. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39611-3_13
Narodytska, N., Bjørner, N., Marinescu, M.V., Sagiv, M.: Core-guided minimal correction set and core enumeration. In: IJCAI, pp. 1353–1361. ijcai.org (2018)
Narodytska, N., Shrotri, A., Meel, K.S., Ignatiev, A., Marques-Silva, J.: Assessing heuristic machine learning explanations with model counting. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 267–278. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_19
Pan, G., Vardi, M.Y.: Symbolic decision procedures for QBF. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 453–467. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_34
Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3), 293–304 (1986)
Pulina, L., Seidl, M.: The 2016 and 2017 QBF solvers evaluations (QBFEVAL’16 and QBFEVAL’17). Artif. Intell. 274, 224–248 (2019)
Sang, T., Beame, P., Kautz, H.A.: Performing Bayesian inference by weighted model counting. In: AAAI, pp. 475–482. AAAI Press/The MIT Press (2005)
Shukla, A., Biere, A., Pulina, L., Seidl, M.: A survey on applications of quantified Boolean formulas. In: ICTAI, pp. 78–84. IEEE (2019)
Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: preliminary report. In: STOC, pp. 1–9. ACM (1973)
Thimm, M., Wallner, J.P.: On the complexity of inconsistency measurement. Artif. Intell. 275, 411–456 (2019)
Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quantified Boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46135-3_14
Zhou, Z., Qian, Z., Reiter, M.K., Zhang, Y.: Static evaluation of noninterference using approximate model counting. In: SP, pp. 514–528. IEEE Computer Society (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shukla, A., Möhle, S., Kauers, M., Seidl, M. (2022). OuterCount: A First-Level Solution-Counter for Quantified Boolean Formulas. In: Buzzard, K., Kutsia, T. (eds) Intelligent Computer Mathematics. CICM 2022. Lecture Notes in Computer Science(), vol 13467. Springer, Cham. https://doi.org/10.1007/978-3-031-16681-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-16681-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16680-8
Online ISBN: 978-3-031-16681-5
eBook Packages: Computer ScienceComputer Science (R0)