Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Improved Upper Bound on the Crossing Number of the Hypercube

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2003)

Abstract

We draw the n-dimensional hypercube in the plane with \(\frac{5}{32}4^n - \lfloor \frac{n^2 + 1}{2} \rfloor 2^{n-2}\) crossings, which improves the previous best estimation and coincides with the long conjectured upper bound of Erdös and Guy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dean, A.M., Richter, R.B.: The crossing number of C4 × C4. J. Graph Theory 19, 125–129 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for Visualisations of Graphs. Prentice Hall, New Jersey (1999)

    Google Scholar 

  3. Eggleton, R.B., Guy, R.P.: The crossing number of the n-cube. Notices AMS 17, 757 (1970)

    Google Scholar 

  4. Erdös, P., Guy, R.P.: Crossing number problems. American Mathematical Monthly 80, 52–58 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  5. Faria, L., Figueiredo, C.M.H.: On Eggleton and Guy’s conjectured upper bound for the crossing number of the n-cube. Mathematica Slovaca 50, 271–287 (2000)

    MATH  MathSciNet  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Discrete Mathematics 4, 312–316 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Guy, R.P.: Latest results on crossing numbers. In: TAPSOFT 1985 and CSE 1985. Lecture Notes in Mathematics, vol. 186, pp. 143–156. Springer, New York (1971)

    Chapter  Google Scholar 

  8. Harary, F.: Graph Theory. Addison Wesley, Reading (1969)

    Google Scholar 

  9. Leighton, F.T.: Complexity Issues in VLSI. MIT Press, Cambridge (1983)

    Google Scholar 

  10. Liebers, A.: Planarizing graphs - a survey and annotated bibliography. J. Graph Algorithms and Applications 5, 1–74 (2001)

    MathSciNet  Google Scholar 

  11. Madej, T.: Bounds for the crossing number of the n-cube. J. Graph Theory 15, 81–97 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Shahrokhi, F., Sýkora, O., Székely, L.A., Vrt’o, I.: Crossing numbers: bounds and applications, in: Intuitive Geometry. In: Bárány, I., Böröczky, K. (eds.) Bolyai Society Mathematical Studies 6, Akadémia Kiadó, Budapest, pp. 179–206 (1997)

    Google Scholar 

  13. Sýkora, O., Vrt’o, I.: On the crossing number of the hypercube and cube connected cycles. BIT 33, 232–237 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Faria, L., de Figueiredo, C.M.H., Sýkora, O., Vrt’o, I. (2003). An Improved Upper Bound on the Crossing Number of the Hypercube. In: Bodlaender, H.L. (eds) Graph-Theoretic Concepts in Computer Science. WG 2003. Lecture Notes in Computer Science, vol 2880. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39890-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39890-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20452-7

  • Online ISBN: 978-3-540-39890-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics