Abstract
We draw the n-dimensional hypercube in the plane with \(\frac{5}{32}4^n - \lfloor \frac{n^2 + 1}{2} \rfloor 2^{n-2}\) crossings, which improves the previous best estimation and coincides with the long conjectured upper bound of Erdös and Guy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dean, A.M., Richter, R.B.: The crossing number of C4 × C4. J. Graph Theory 19, 125–129 (1995)
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for Visualisations of Graphs. Prentice Hall, New Jersey (1999)
Eggleton, R.B., Guy, R.P.: The crossing number of the n-cube. Notices AMS 17, 757 (1970)
Erdös, P., Guy, R.P.: Crossing number problems. American Mathematical Monthly 80, 52–58 (1973)
Faria, L., Figueiredo, C.M.H.: On Eggleton and Guy’s conjectured upper bound for the crossing number of the n-cube. Mathematica Slovaca 50, 271–287 (2000)
Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Discrete Mathematics 4, 312–316 (1983)
Guy, R.P.: Latest results on crossing numbers. In: TAPSOFT 1985 and CSE 1985. Lecture Notes in Mathematics, vol. 186, pp. 143–156. Springer, New York (1971)
Harary, F.: Graph Theory. Addison Wesley, Reading (1969)
Leighton, F.T.: Complexity Issues in VLSI. MIT Press, Cambridge (1983)
Liebers, A.: Planarizing graphs - a survey and annotated bibliography. J. Graph Algorithms and Applications 5, 1–74 (2001)
Madej, T.: Bounds for the crossing number of the n-cube. J. Graph Theory 15, 81–97 (1991)
Shahrokhi, F., Sýkora, O., Székely, L.A., Vrt’o, I.: Crossing numbers: bounds and applications, in: Intuitive Geometry. In: Bárány, I., Böröczky, K. (eds.) Bolyai Society Mathematical Studies 6, Akadémia Kiadó, Budapest, pp. 179–206 (1997)
Sýkora, O., Vrt’o, I.: On the crossing number of the hypercube and cube connected cycles. BIT 33, 232–237 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Faria, L., de Figueiredo, C.M.H., Sýkora, O., Vrt’o, I. (2003). An Improved Upper Bound on the Crossing Number of the Hypercube. In: Bodlaender, H.L. (eds) Graph-Theoretic Concepts in Computer Science. WG 2003. Lecture Notes in Computer Science, vol 2880. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39890-5_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-39890-5_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20452-7
Online ISBN: 978-3-540-39890-5
eBook Packages: Springer Book Archive