Abstract
In an emerging computing paradigm, computational capabilities, from processing power to storage capacities, are offered to users over communication networks as a cloud-based service. There, demanding computations are outsourced in order to limit infrastructure costs.
The idea of verifiable computing is to associate a data structure, a proof-of-work certificate, to the result of the outsourced computation. This allows a verification algorithm to prove the validity of the result, faster than by recomputing it. We talk about a Prover (the server performing the computations) and a Verifier.
Goldwasser, Kalai and Rothblum gave in 2008 a generic method to verify any parallelizable computation, in almost linear time in the size of the, potentially structured, inputs and the result. However, the extra cost of the computations for the Prover (and therefore the extra cost to the customer), although only almost a constant factor of the overall work, is nonetheless prohibitive in practice.
Differently, we will here present problem-specific procedures in computer algebra, e.g. for exact linear algebra computations, that are Prover-optimal, that is that have much less financial overhead.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aaronson, S., Wigderson, A.: Algebrization: a new barrier in complexity theory. ACM Trans. Comput. Theory 1(1), 2:1–2:54 (2009). https://doi.org/10.1145/1490270.1490272
Ábrahám, E., et al.: \({\sf SC}^{\sf 2}\): satisfiability checking meets symbolic computation. In: Kohlhase, M., Johansson, M., Miller, B., de de Moura, L., Tompa, F. (eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 28–43. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42547-4_3. https://members.loria.fr/PFontaine/Abraham1.pdf
Arora, S., Safra, S.: Probabilistic checking of proofs; a new characterization of NP. In: 33rd Annual Symposium on Foundations of Computer Science, 24–27 October 1992, pp. 2–13. IEEE, Pittsburgh (1992)
Arreche, C. (ed.): ISSAC 2018, Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, New York, USA. ACM Press, New York, July 2018
Babai, L.: Trading group theory for randomness. In: Sedgewick [54], pp. 421–429. https://doi.org/10.1145/22145.22192
Babai, L., Fortnow, L., Lund, C.: Nondeterministic exponential time has two-prover interactive protocols. In: Proceedings of the 31st Annual Symposium on Foundations of Computer Science, vol. 1, pp. 16–25, October 1990. https://doi.org/10.1109/FSCS.1990.89520
Bangerter, E., Camenisch, J., Maurer, U.: Efficient proofs of knowledge of discrete logarithms and representations in groups with hidden order. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 154–171. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4_11
Beame, P.W., Cook, S.A., Hoover, H.J.: Log depth circuits for division and related problems. SIAM J. Comput. 15, 994–1003 (1986). https://doi.org/10.1137/0215070
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Ashby, V. (ed.) Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, Fairfax, November 1993. http://www-cse.ucsd.edu/users/mihir/papers/ro.pdf
Ben-Sasson, E., et al.: Computational integrity with a public random string from quasi-linear PCPs. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS, vol. 10212, pp. 551–579. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_19
Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046 (2018). https://eprint.iacr.org/2018/046
Blum, M., Kannan, S.: Designing programs that check their work. J. ACM 42(1), 269–291 (1995). http://www.icsi.berkeley.edu/pubs/techreports/tr-88-009.pdf
Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 319–338 (2018). https://doi.org/10.1109/SP.2018.00020
Calude, C.S., Thompson, D.: Incompleteness, undecidability and automated proofs. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp. 134–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45641-6_10
Chyzak, F., Mahboubi, A., Sibut-Pinote, T., Tassi, E.: A computer-algebra-based formal proof of the irrationality of \(\zeta \)(3). In: ITP - 5th International Conference on Interactive Theorem Proving, Vienna, Austria (2014). https://hal.inria.fr/hal-00984057
Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_18
DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing. Inf. Proces. Lett. 7(4), 193–195 (1978). https://doi.org/10.1016/0020-0190(78)90067-4
Dumas, J.G., Giorgi, P., Elbaz-Vincent, P., Urbańska, A.: Parallel computation of the rank of large sparse matrices from algebraic k-theory. In: Moreno-Maza, M., Watt, S. (eds.) PASCO 2007, Proceedings of the 3rd ACM International Workshop on Parallel Symbolic Computation, pp. 43–52. Waterloo University, Ontario, July 2007. http://hal.archives-ouvertes.fr/hal-00142141
Dumas, J.G., Kaltofen, E.: Essentially optimal interactive certificates in linear algebra. In: Nabeshima [46], pp. 146–153. https://doi.org/10.1145/2608628.2608644, http://hal.archives-ouvertes.fr/hal-00932846
Dumas, J.G., Kaltofen, E., Thomé, E.: Interactive certificate for the verification of Wiedemann’s Krylov sequence: application to the certification of the determinant, the minimal and the characteristic polynomials of sparse matrices. Technical report, IMAG-hal-01171249 arXiv cs.SC/1507.01083, January 2016. http://hal.archives-ouvertes.fr/hal-01171249
Dumas, J.G., Kaltofen, E., Thomé, E., Villard, G.: Linear time interactive certificates for the minimal polynomial and the determinant of a sparse matrix. In: Gao [34], pp. 199–206. https://doi.org/10.1145/2930889.2930908, http://hal.archives-ouvertes.fr/hal-01266041
Dumas, J.G., Kaltofen, E., Villard, G., Zhi, L.: Polynomial time interactive proofs for linear algebra with exponential matrix dimensions and scalars given by polynomial time circuits. In: Safey El Din [52], pp. 125–132. https://doi.org/10.1145/3087604.3087640, http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/Publications/DKVZ17.pdf
Dumas, J.G., Lucas, D., Pernet, C.: Certificates for triangular equivalence and rank profiles. In: Safey El Din [52], pp. 133–140. https://doi.org/10.1145/3087604.3087609, http://hal.archives-ouvertes.fr/hal-01466093
Dumas, J.-G., Zucca, V.: Prover efficient public verification of dense or sparse/structured matrix-vector multiplication. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343, pp. 115–134. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59870-3_7. http://hal.archives-ouvertes.fr/hal-01503870
Eberly, W.: A new interactive certificate for matrix rank. Technical report 2015–1078-11, University of Calgary, June 2015. http://prism.ucalgary.ca/bitstream/1880/50543/1/2015-1078-11.pdf
Eberly, W.: Selecting algorithms for black box matrices: checking for matrix properties that can simplify computations. In: Gao [34]
Elkhiyaoui, K., Önen, M., Azraoui, M., Molva, R.: Efficient techniques for publicly verifiable delegation of computation. In: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, ASIA CCS 2016, pp. 119–128. ACM, New York (2016). https://doi.org/10.1145/2897845.2897910
Fiat, A., Shamir, A.: How To Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12. http://www.cs.rit.edu/~jjk8346/FiatShamir.pdf
Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno, B.: Hash first, argue later: adaptive verifiable computations on outsourced data. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016, pp. 1304–1316. ACM (2016). http://doi.acm.org/10.1145/2976749.2978368
Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and matrix computations, with applications. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS 2012, pp. 501–512. ACM, New York (2012). https://doi.org/10.1145/2382196.2382250
Freivalds, R.: Fast probabilistic algorithms. In: Bečvář, J. (ed.) MFCS 1979. LNCS, vol. 74, pp. 57–69. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09526-8_5
Furer, M., Goldreich, O., Mansour, Y., Sipser, M., Zachos, S.: On completeness and soundness in interactive proof systems. In: Micali, S. (ed.) Randomness and Computation. Advances in Computing Research, vol. 5, pp. 429–442. JAI Press, Greenwich (1989). http://www.wisdom.weizmann.ac.il/~oded/PS/fgmsz.ps
Gao, X.S. (ed.): ISSAC 2016, Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation, Waterloo, Canada. ACM Press, New York, July 2016
Gąsieniec, L., Levcopoulos, C., Lingas, A., Pagh, R., Tokuyama, T.: Efficiently correcting matrix products. Algorithmica 79, 1–16 (2016). https://doi.org/10.1007/s00453-016-0202-3
Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.: Using fully homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs. J. Cryptol. 28, 1–24 (2014). https://doi.org/10.1007/s00145-014-9184-y
Giorgi, P., Neiger, V.: Certification of minimal approximant bases. In: Arreche [4]
Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: Dwork, C. (ed.) STOC 2008, Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, pp. 113–122. ACM Press, May 2008. https://doi.org/10.1145/1374376.1374396, http://research.microsoft.com/en-us/um/people/yael/publications/2008-delegatingcomputation.pdf
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: Sedgewick [54], pp. 291–304. https://doi.org/10.1145/22145.22178
Kaltofen, E., Trager, B.: Computing with polynomials given by black boxes for their evaluations: greatest common divisors, factorization, separation of numerators and denominators. J. Symb. Comput. 9(3), 301–320 (1990). http://www.math.ncsu.edu/~kaltofen/bibliography/90/KaTr90.pdf
Kaltofen, E.: Analysis of Coppersmith’s block Wiedemann algorithm for the parallel solution of sparse linear systems. Math. Comput. 64(210), 777–806 (1995). https://doi.org/10.2307/2153451
Kaltofen, E., Pernet, C.: Sparse polynomial interpolation codes and their decoding beyond half the minimum distance. In: Nabeshima [46]. http://arxiv.org/abs/1403.3594
Kaltofen, E.L., Nehring, M., Saunders, B.D.: Quadratic-time certificates in linear algebra. In: Leykin, A. (ed.) ISSAC 2011, Proceedings of the 2011 ACM International Symposium on Symbolic and Algebraic Computation, San Jose, California, USA, pp. 171–176. ACM Press, New York, June 2011. http://www.math.ncsu.edu/~kaltofen/bibliography/11/KNS11.pdf
Kimbrel, T., Sinha, R.K.: A probabilistic algorithm for verifying matrix products using \(O(n^2)\) time and \(\log _2 n + O(1)\) random bits. Inf. Proces. Lett. 45(2), 107–110 (1993). ftp://trout.cs.washington.edu/tr/1991/08/UW-CSE-91-08-06.pdf
Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive proof systems. J. ACM 39(4), 859–868 (1992). https://doi.org/10.1145/146585.146605
Nabeshima, K. (ed.): ISSAC 2014, Proceedings of the 2014 ACM International Symposium on Symbolic and Algebraic Computation, Kobe, Japan. ACM Press, New York, Jul 2014
Ng, E.W. (ed.): Symbolic and Algebraic Computation. LNCS, vol. 72. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09519-5
Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP 2013, pp. 238–252. IEEE Computer Society, Washington, DC (2013). https://doi.org/10.1109/SP.2013.47
Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_24
Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs for delegating computation. In: Wichs, D., Mansour, Y. (eds.) Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21 June 2016, pp. 49–62. ACM (2016). https://doi.org/10.1145/2897518.2897652, http://dl.acm.org/citation.cfm?id=2897518
Roche, D.: Error correction in fast matrix multiplication and inverse. In: Arreche [4]
Safey El Din, M. (ed.): ISSAC 2017, Proceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation, Kaiserslautern, Deutschland. ACM Press, New York, July 2017
Schwartz, J.T.: Probabilistic algorithms for verification of polynomial identities. In: Ng [47], pp. 200–215. https://doi.org/10.1007/3-540-09519-5_72
Sedgewick, R. (ed.): STOC 1985, ACM Symposium on Theory of Computing, Providence, Rhode Island, USA. ACM Press, New York, May 1985
Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992). https://doi.org/10.1145/146585.146609
Storjohann, A.: Integer matrix rank certification. In: May, J.P. (ed.) ISSAC 2009, Proceedings of the 2009 ACM International Symposium on Symbolic and Algebraic Computation, Seoul, Korea, pp. 333–340. ACM Press, New York, Jul 2009. https://cs.uwaterloo.ca/~astorjoh/issac09.pdf
Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 71–89. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_5
Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them. Commun. ACM 58(2), 74–84 (2015). https://doi.org/10.1145/2641562
Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory 32(1), 54–62 (1986). https://doi.org/10.1109/TIT.1986.1057137
Zhang, Y., Blanton, M.: Efficient secure and verifiable outsourcing of matrix multiplications. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 158–178. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13257-0_10
Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng [47], pp. 216–226. https://doi.org/10.1007/3-540-09519-5_73
Acknowledgment
I thank Brice Boyer, Pascal Lafourcade, Shafi Goldwasser, Erich Kaltofen, Julio López Fenner, David Lucas, Vincent Neiger, Jean-Baptiste Orfila, Clément Pernet, Maxime Puys, Jean-Louis Roch, Dan Roche, Guy Rothblum, Justin Thaler, Emmanuel Thomé, Gilles Villard, Lihong Zhi and an anonymous referee for their helpful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Dumas, JG. (2018). Proof-of-Work Certificates that Can Be Efficiently Computed in the Cloud (Invited Talk). In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2018. Lecture Notes in Computer Science(), vol 11077. Springer, Cham. https://doi.org/10.1007/978-3-319-99639-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-99639-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99638-7
Online ISBN: 978-3-319-99639-4
eBook Packages: Computer ScienceComputer Science (R0)