Abstract
The problem of effective organization of Students service center (SSC) activities is considered. In this paper is proposed combine agents interaction and queuing system model for creation real time control of SSC load balancing. The developed combined model allows to minimize the number of required personnel resources and their idle time and to create adaptive, modular, well scalable system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adan, I., Resing, J.: Queueing Systems. Eindhoven University of Technology (2015)
Yuan, X., Hwarng, H.B.: Managing a service system with social interactions: stability and chaos. Comput. Industr. Eng. 63(4), 1178–1188 (2012). https://doi.org/10.1016/j.cie.2012.06.022
Jiang, Y., Li, Z.: Locality-sensitive task allocation and load balancing in networked multiagent systems: talent versus centrality. J. Parallel Distrib. Comput. 71(6), 822–836 (2011). https://doi.org/10.1016/j.jpdc.2011.01.006
Down, D.G., Lewis, M.E.: Dynamic load balancing in parallel queueing systems: stability and optimal control. Eur. J. Oper. Res. 168(2), 509–519 (2006). https://doi.org/10.1016/j.ejor.2004.04.041
Li, X., Mao, W., Zeng, D., Wang, F.-Y.: Agent-based social simulation and modeling in social computing. In: Yang, C.C., Chen, H., Chau, M., Chang, K., Lang, S.-D., Chen, P.S., Hsieh, R., Zeng, D., Wang, F.-Y., Carley, K., Mao, W., Zhan, J. (eds.) ISI 2008. LNCS, vol. 5075, pp. 401–412. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69304-8_41
Klügl, F., Timpf, S.: Approaching interactions in agent-based modelling with an affordance perspective. In: El Fallah-Seghrouchni, A., Ricci, A., Son, T.C. (eds.) EMAS 2017. LNCS (LNAI), vol. 10738, pp. 21–37. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91899-0_2
Szymanezyk, O., Dickinson, P., Duckett, T.: Towards agent-based crowd simulation in airports using games technology. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2011. LNCS (LNAI), vol. 6682, pp. 524–533. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22000-5_54
Luo, J., Shi, Z., Wang, M., Huang, H.: Multi-agent cooperation: a description logic view. In: Lukose, D., Shi, Z. (eds.) PRIMA 2005. LNCS (LNAI), vol. 4078, pp. 365–379. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03339-1_29
Monostori, L., Valckenaers, P., Dolgui, A., Panetto, H., Brdys, M., et al.: Cooperative control in production and logistics. Ann. Rev. Control 39(1), 12–29 (2015). https://doi.org/10.1016/j.arcontrol.2015.03.001. Elsevier
Seel, N.M. (ed.): Encyclopedia of the Sciences of Learning. Springer, Boston (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Abdrakhmanova, M., Mutanov, G., Mamykova, Z., Tukeyev, U. (2018). Agents Interaction and Queueing System Model of Real Time Control of Students Service Center Load Balancing. In: Nguyen, N., Pimenidis, E., Khan, Z., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2018. Lecture Notes in Computer Science(), vol 11055. Springer, Cham. https://doi.org/10.1007/978-3-319-98443-8_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-98443-8_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98442-1
Online ISBN: 978-3-319-98443-8
eBook Packages: Computer ScienceComputer Science (R0)