Nothing Special   »   [go: up one dir, main page]

Skip to main content

Linked Urban Open Data Including Social Problems’ Causality and Their Costs

  • Conference paper
  • First Online:
Semantic Technology (JIST 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10675))

Included in the following conference series:

Abstract

There are various urban problems, such as suburban crime, dead shopping street, and littering. However, various factors are socially intertwined; thus, structural management of the related data is required for visualizing and solving such problems. Moreover, in order to implement the action plans, local governments first need to grasp the cost-effectiveness. Therefore, this paper aims to construct Linked Open Data (LOD) that include causal relations of urban problems and the related cost information in the budget. We first designed a data schema that represents the urban problems’ causality and extended the schema to include budget information based on QB4OLAP. Next, we semi-automatically enriched instances according to the schema using natural language processing and crowdsourcing. Finally, as use cases of the resulting LOD, we provided example queries to extract the relationships between several problems and the particular cost information. We found several causes that lead to the vicious circle of urban problems and for the solutions of those problems, we suggest to a local government which actions should be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.w3.org/TR/vocab-data-cube/.

  2. 2.

    http://motools.sourceforge.net/event/event.html.

  3. 3.

    https://openspending.org.

  4. 4.

    https://www.w3.org/TR/vocab-data-cube/.

  5. 5.

    https://www.w3.org/TR/vocab-data-cube/.

  6. 6.

    http://compling.hss.ntu.edu.sg/wnja/index.en.html.

  7. 7.

    https://developers.google.com/custom-search/?hl=en.

  8. 8.

    https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/.

  9. 9.

    http://www.lancers.jp.

  10. 10.

    https://jena.apache.org/.

  11. 11.

    https://data.city.osaka.lg.jp/.

  12. 12.

    https://poi.apache.org/.

  13. 13.

    http://www.ohsuga.lab.uec.ac.jp/urbanproblem/.

References

  1. Etcheverry, L., Vaisman, A.A.: QB4OLAP: a new vocabulary for OLAP cubes on the semantic web. In: Proceedings of the Third International Conference on Consuming Linked Data (COLD), pp. 27–38 (2012)

    Google Scholar 

  2. Szekely, P., et al.: Building and using a knowledge graph to combat human trafficking. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 205–221. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_12

    Chapter  Google Scholar 

  3. Egami, S., Kawamura, T., Ohsuga, A.: Building urban LOD for solving illegally parked bicycles in Tokyo. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 291–307. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_28

    Chapter  Google Scholar 

  4. Egami, S., Kawamura, T., Kozaki, K., Ohsuga, A.: Construction of linked urban problem data with causal relations using crowdsourcing. In: Proceeding of the 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), (to appear) (2017)

    Google Scholar 

  5. Shiramatsu, S., Tossavainen, T., Ozono, T., Shintani, T.: Towards continuous collaboration on civic tech projects: use cases of a goal sharing system based on linked open data. In: Tambouris, E., Panagiotopoulos, P., Sæbø, Ø., Tarabanis, K., Wimmer, M.A., Milano, M., Pardo, T.A. (eds.) ePart 2015. LNCS, vol. 9249, pp. 81–92. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22500-5_7

    Chapter  Google Scholar 

  6. Santos, H., Dantas, V., Furtado, V., Pinheiro, P., McGuinness, D.L.: From data to city indicators: a knowledge graph for supporting automatic generation of dashboards. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10250, pp. 94–108. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58451-5_7

    Chapter  Google Scholar 

  7. Pileggi, S.F., Hunter, J.: An ontological approach to dynamic fine-grained Urban Indicators. Procedia Comput. Sci. 108, 2059–2068 (2017)

    Article  Google Scholar 

  8. Höffner, K., Martin, M., Lehmann, J.: LinkedSpending: openspending becomes linked open data. Semant. Web J. 7(1), 95–104 (2016)

    Article  Google Scholar 

  9. Demartini, G., Difallah, D.E., Cudré-Mauroux, P.: Large-scale linked data integration using probabilistic reasoning and crowdsourcing. Int. J. Very Large Data Bases 22(5), 665–687 (2013)

    Article  Google Scholar 

  10. Celino, I., Contessa, S., Corubolo, M., Dell Aglio, D., Valle, E. D., Fumeo, S., Krüger, T.: Linking smart cities datasets with human computation - the case of UrbanMatch. In: Proceedings of the 11th International Semantic Web Conference (ISWC), pp. 34–49 (2011)

    Google Scholar 

  11. Ahn, L.V.: Games with a purpose. IEEE Comput. 39(6), 92–94 (2006)

    Article  Google Scholar 

  12. Kudo, T., Matsumoto, Y.: Japanese dependency analyisis using cascaded chunking. In: Proceedings of the 6th Conference on Natural Language Learning, vol. 20, pp. 1–7 (2002)

    Google Scholar 

  13. Winkler, W.: The state record linkage and current research problems. Technical report, Statistics of Income Division, Internal Revenue Service Publication (1999)

    Google Scholar 

  14. Nguyen, T.M., Kawamura, T., Tahara, Y., Ohsuga, A.: Self-supervised capturing of users’ activities from weblogs. Int. J. Intell. Inf. Database Syst. 6(1), 61–76 (2012)

    Google Scholar 

  15. Augenstein, I., Padó, S., Rudolph, S.: LODifier: generating linked data from unstructured text. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 210–224. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30284-8_21

    Chapter  Google Scholar 

  16. Milne, D., Witten, I.H.: Learning to Link with Wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management (CIKM), pp. 509–518 (2008)

    Google Scholar 

  17. Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen, R., Zaveri, A.: Test-driven evaluation of linked data quality. In: Proceedings of the 23rd International Conference on World Wide Web (WWW), pp. 747–758 (2014)

    Google Scholar 

  18. Fleiss, J.L., Cohen, J.: The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ. Psychol. Measur. 33(3), 613–619 (1973)

    Article  Google Scholar 

  19. Viera, A.J., Garrett, J.M.: Understanding interobserver agreement: the kappa statistic. Fam. Med. 37(5), 360–363 (2005)

    Google Scholar 

  20. Wilson, J.Q., George, L.K.: Broken windows. Critical issues in policing: contemporary readings, pp. 395–407 (1982)

    Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers 16K12411, 16K00419, 16K12533, 17H04705.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shusaku Egami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Egami, S., Kawamura, T., Kozaki, K., Ohsuga, A. (2017). Linked Urban Open Data Including Social Problems’ Causality and Their Costs. In: Wang, Z., Turhan, AY., Wang, K., Zhang, X. (eds) Semantic Technology. JIST 2017. Lecture Notes in Computer Science(), vol 10675. Springer, Cham. https://doi.org/10.1007/978-3-319-70682-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70682-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70681-8

  • Online ISBN: 978-3-319-70682-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics