Abstract
There is a huge amount of data spread across the web and stored in databases that we can use to build knowledge graphs. However, exploiting this data to build knowledge graphs is difficult due to the heterogeneity of the sources, scale of the amount of data, and noise in the data. In this paper we present an approach to building knowledge graphs by exploiting semantic technologies to reconcile the data continuously crawled from diverse sources, to scale to billions of triples extracted from the crawled content, and to support interactive queries on the data. We applied our approach, implemented in the DIG system, to the problem of combating human trafficking and deployed it to six law enforcement agencies and several non-governmental organizations to assist them with finding traffickers and helping victims.
Chapter PDF
Similar content being viewed by others
References
Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S.E., Widom, J.: Swoosh: A generic approach to entity resolution. The VLDB Journal 18(1), 255–276 (2009). http://dx.doi.org/10.1007/s00778-008-0098-x
Bizer, C., Schultz, A.: The r2r framework: publishing and discovering mappings on the web. In: Workshop on Consuming Open Linked Data (COLD) (2010)
Chen, T., Borth, D., Darrell, T., Chang, S.: Deepsentibank: visual sentiment concept classification with deep convolutional neural networks. CoRR abs/1410.8586 (2014). http://arxiv.org/abs/1410.8586
Jentzsch, A., Isele, R., Bizer, C.: Silk: generating RDF links while publishing or consuming linked data. In: 9th International Semantic Web Conference (2010)
Knoblock, C.A., Szekely, P., Ambite, J.L., Goel, A., Gupta, S., Lerman, K., Muslea, M., Taheriyan, M., Mallick, P.: Semi-automatically mapping structured sources into the semantic web. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 375–390. Springer, Heidelberg (2012)
Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 18th International Conference on Machine Learning (ICML) (2001)
Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of massive datasets. Cambridge University Press (2014)
Ramnandan, S.K., Mittal, A., Knoblock, C.A., Szekely, P.: Assigning semantic labels to data sources. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 403–417. Springer, Heidelberg (2015)
Schultz, A., Matteini, A., Isele, R., Mendes, P.N., Bizer, C., Becker, C.: LDIF: A framework for large-scale linked data integration. In: 21st International World Wide Web Conference (WWW 2012). Developers Track (2012)
Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: A graph-based approach to learn semantic descriptions of data sources. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 607–623. Springer, Heidelberg (2013)
Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: A scalable approach to learn semantic models of structured sources. In: Proceedings of the 8th IEEE International Conference on Semantic Computing (ICSC 2014) (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Szekely, P. et al. (2015). Building and Using a Knowledge Graph to Combat Human Trafficking. In: Arenas, M., et al. The Semantic Web - ISWC 2015. ISWC 2015. Lecture Notes in Computer Science(), vol 9367. Springer, Cham. https://doi.org/10.1007/978-3-319-25010-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-25010-6_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25009-0
Online ISBN: 978-3-319-25010-6
eBook Packages: Computer ScienceComputer Science (R0)