Nothing Special   »   [go: up one dir, main page]

Skip to main content

Effective Identification of Hot Spots in PPIs Based on Ensemble Learning

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10362))

Included in the following conference series:

  • 2145 Accesses

Abstract

The experiment of alanine scanning has shown that most of the binding energies in protein-protein interactions are contributed by a few significant residues at the protein-protein interfaces, and those important residues are called hot spot residues. On the basis of protein-protein interaction, hot spot residues tend to get together to form modules, and those modules are defined as hot regions. So, hot spot residues play an important role in revealing the life activities of organisms. Therefore, how to predict hot spot residues and non-spot residues effectively and accurately is a vital research direction. A new method is proposed combining protein amino acid physicochemical features and structural features to predict the hot spot residues based on the ensemble learning. The experimental results demonstrate that this method of prediction hot spot residues has a good effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hsu, C.M., Chen, C.Y., Liu, B.J., Huang, C.C.: Identification of hot regions in protein-protein interactions by sequential pattern mining. BMC Bioinform. 8(Suppl 5), S8 (2007)

    Article  Google Scholar 

  2. Keskin, O., Tuncbag, N., Gursoy, A.: Predicting protein-protein interactions from the molecular to the proteome level. Chem. Rev. 116(8), 4884–4909 (2016)

    Article  Google Scholar 

  3. Yu, X., Rangwala, H., Domeniconi, G., Zhang, G.J., Yu, Z.W.: Protein function prediction using multilabel ensemble classification. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(4), 1045–1057 (2013)

    Article  Google Scholar 

  4. Hsu, C.M., Chen, C.Y., Liu, B.J.: MAGIIC-PRO: detecting functional signatures by efficient discovery of long patterns in protein sequences. Nucleic Acids Res. 36(4), 1400–1406 (2008)

    Article  Google Scholar 

  5. Scott, D.E., Bayly, A.R., Abell, C., Skidmore, J.: Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat. Rev. Drug Discov. 15, 533–550 (2016)

    Article  Google Scholar 

  6. Sahu, S.S., Panda, G.: Efficient localization of hot spots in proteins using a novel s-transform based filtering approach. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1235–1246 (2011)

    Article  Google Scholar 

  7. Tuncbag, N., Gursoy, A., Keskin, O.: Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 25(12), 1513–1520 (2009)

    Article  Google Scholar 

  8. Reichmann, D., Rahat, O., Albeck, S., Meged, R., Dym, O., Schreiber, G.: The modular architecture of protein-protein binding interfaces. Proc. Natl. Acad. Sci. 102(1), 57–62 (2005)

    Article  Google Scholar 

  9. Ahmad, S., Keskin, O., Sarai, A., Nussinov, R.: Protein–DNA interactions: structural, thermodynamic and clustering patterns of conserved residues in DNA-binding proteins. Nucleic Acids Res. 36(18), 5922–5932 (2008)

    Article  Google Scholar 

  10. Armon, A., Dan, G., Ben-Tal, N.: ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J. Mol. Biol. 307(1), 447–463 (2001)

    Article  Google Scholar 

  11. Keskin, O., Ma, B.Y., Mol, R.J.: Hot regions in protein-protein interactions: the organization and contribution of structurally conserved hot spot residues. J. Mol. Biol. 345(5), 1281–1294 (2005)

    Article  Google Scholar 

  12. Xu, B., Wei, X.M., Deng, L., Guan, J., Zhou, S.G.: A semi-supervised boosting SVM for predicting hot spots at protein-protein interfaces. BMC Syst. Biol. 2(2), 1–12 (2012)

    Google Scholar 

  13. Morrison, K.L., Weiss, G.A.: Combinatorial alanine-scanning. Curr. Opin. Chem. Biol. 5(3), 302–307 (2001)

    Article  Google Scholar 

  14. Thorn, K.S., Bogan, A.A.: ASEdb: a data base of alanine mutations and their effects on the free energy of binding in protein interactions. Bioinformatics 17(3), 284–285 (2001)

    Article  Google Scholar 

  15. Gonzalez Ruiz, D., Gohlke, H.: Targeting protein-protein interactions with small molecules: challenges and perspectives for computational biding epitope detection and ligand finding. Curr. Med. Chem. 13(22), 2607–2625 (2006)

    Article  Google Scholar 

  16. Ezkurdia, I., Bartoli, L., Fariselli, P., Casadio, R., Valencia, A., Tress, M.L.: Progress and challenges in predicting protein-protein interaction sites. Brief. Bioinform. 10(10), 233–246 (2009)

    Google Scholar 

  17. Lise, S., Buchan, D., Pontil, M., Jones, D.T.: Predictions of hot spot residues at protein-protein interfaces using support vector machines. PLoS One 6(2), e16774 (2011). doi:10.1371/journal.pone.0016774

    Article  Google Scholar 

  18. Lise, S., Archambeau, C., Pontil, M., Jones, D.T.: Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods. BMC Bioinform. 10(1), 365 (2009). doi:10.1186/1471-2105-10-365

    Article  Google Scholar 

  19. Tuncbag, N., Keskin, O., Gursoy, A.: HotPoint: hot spot prediction server for protein interfaces. Nucleic Acids Res. 38, 402–406 (2010)

    Article  Google Scholar 

  20. Cukuroglu, E., Gursoy, A., Keskin, O.: Analysis of hot region organization in hub proteins. Ann. Biomed. Eng. 38(6), 2068–2078 (2010)

    Article  Google Scholar 

  21. Carles, P., Fabian, G., Juan, F.: Prediction of protein-binding areas by small world residue networks and application to docking. BMC Bioinform. 12, 378–388 (2011)

    Article  Google Scholar 

  22. Cho, K., Kim, D., Lee, D.: A feature-based approach to modeling protein-protein interaction hot spots. Nucleic Acids Res. 37(8), 2672–2687 (2009)

    Article  Google Scholar 

  23. Nan, D.F., Zhang, X.L.: Prediction of hot regions in protein-protein interactions based on complex network and community detection. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 17–23 (2013)

    Google Scholar 

  24. Hu, J., Zhang, X.L., Liu, X.M., Tang, J.S.: Prediction of hot regions in protein-protein interaction by combining density-based in cremental clustering with feature-based classification. Comput. Biol. Med. 61, 127–137 (2015)

    Article  Google Scholar 

  25. Mihel, J., Sikić, M., Tomić, S., Jeren, B., Vlahovicek, K.: PSAIA-protein structure and interaction analyzer. BMC Struct. Biol. 8(1), 1–11 (2008)

    Article  Google Scholar 

  26. Li, Z.R., Lin, H.H., Han, L.Y., et al.: PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res. 34, W32–W37 (2015)

    Article  Google Scholar 

  27. Burgoyne, N., Jackson, R.: Predicting protein interaction sites: binding hot-spots in protein-protein and protein-ligand interface. Bioinformatics 22(11), 1335–1342 (2006)

    Article  Google Scholar 

  28. Li, B.Q., Feng, K.Y., Li, C., Huang, T.: Prediction of protein-protein interaction sites by random forest algorithm with mRMR and IFS. PLoS ONE 7(8), e43927 (2012)

    Article  Google Scholar 

  29. Lin, X., Zhang, X.: Identification of hot regions in protein-protein interactions based on detecting local community structure. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2016. LNCS, vol. 9771, pp. 432–438. Springer, Cham (2016). doi:10.1007/978-3-319-42291-6_43

    Chapter  Google Scholar 

  30. Yugandhar, K., Gromiha, M.M.: Feature selection and classification of protein-protein complexes based on their binding affinities using machine learning approaches. Proteins Struct. Funct. Bioinform. 82(9), 2088–2096 (2014)

    Article  Google Scholar 

  31. Lin, X., Zhang, X.: Prediction and analysis of hot region in protein-protein interactions. In: BIBM 2016, pp. 1598–1603 (2016)

    Google Scholar 

Download references

Acknowledgment

The authors thank the members of Machine Learning and Artificial Intelligence Laboratory, School of Computer Science and Technology, Wuhan University of Science and Technology, for their helpful discussion within seminars. This work was supported in part by National Natural Science Foundation of China (No. 61502356, 61273225, 61273303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lin, X., Huang, Q., Zhou, F. (2017). Effective Identification of Hot Spots in PPIs Based on Ensemble Learning. In: Huang, DS., Jo, KH., Figueroa-García, J. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10362. Springer, Cham. https://doi.org/10.1007/978-3-319-63312-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63312-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63311-4

  • Online ISBN: 978-3-319-63312-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics