Abstract
Protein interaction maps constructed from binary interactions reveal that some proteins are highly connected to others (acting as hub proteins), whereas some others have a few interactions (at the edges of the map). This paper addresses hub proteins from a structural point: interfaces. It investigates how hot spots are organized in hub proteins (hot regions). We annotate interfaces as the ones between two date-hubs (DD), two party hubs (PP), and two non-hubs (NN). We investigate the physico-chemical properties of these three types of interfaces focusing on the accessible surface area distribution, hot region organization, and amino acid composition differences. Results reveal that there are significant differences between DD and PP interfaces. More of the hot spots are organized into the hot regions in DD interfaces compared to PP ones. A high fraction of the interfaces are covered by hot regions in DD interfaces. There are more distinct hot regions in DDs. Since the same (or overlapping) DD interfaces should be used repeatedly, different hot regions can be used to bind to different partners. Further, these hot region characteristics can be used to predict whether a given hub interface is involved in a DD or a PP interface type with 80% accuracy.
Similar content being viewed by others
References
Ahmad, S., O. Keskin, A. Sarai, and R. Nussinov. Protein–DNA interactions: structural, thermodynamic and clustering patterns of conserved residues in DNA-binding proteins. Nucleic Acids Res. 36(18):5922–5932, 2008.
Bloom, J. D., and C. Adami. Apparent dependence of protein evolutionary rate on number of interactions is linked to biases in protein–protein interactions data sets. BMC Evol. Biol. 3:21, 2003.
Clackson, T., and J. A. Wells. A hot spot of binding energy in a hormone–receptor interface. Science 267(5196):383–386, 1995.
Ekman, D., S. Light, A. K. Bjorklund, and A. Elofsson. What properties characterize the hub proteins of the protein–protein interaction network of Saccharomyces cerevisiae? Genome Biol. 7(6):R45, 2006.
Fraser, H. B., D. P. Wall, and A. E. Hirsh. A simple dependence between protein evolution rate and the number of protein–protein interactions. BMC Evol. Biol. 3:11, 2003.
Gavin, A. C., M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J. M. Rick, A. M. Michon, C. M. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Brajenovic, H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M. A. Heurtier, R. R. Copley, A. Edelmann, E. Querfurth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-Furga. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147, 2002.
Gsponer, J., and M. M. Babu. The rules of disorder or why disorder rules. Prog. Biophys. Mol. Biol. 99(2–3):94–103, 2009.
Gunasekaran, K., C. J. Tsai, and R. Nussinov. Analysis of ordered and disordered protein complexes reveals structural features discriminating between stable and unstable monomers. J. Mol. Biol. 341(5):1327–1341, 2004.
Han, J. D., N. Bertin, T. Hao, D. S. Goldberg, G. F. Berriz, L. V. Zhang, D. Dupuy, A. J. Walhout, M. E. Cusick, F. P. Roth, and M. Vidal. Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430(6995):88–93, 2004.
Higurashi, M., T. Ishida, and K. Kinoshita. Identification of transient hub proteins and the possible structural basis for their multiple interactions. Protein Sci. 17(1):72–78, 2008.
Ito, T., T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98(8):4569–4574, 2001.
Jordan, I. K., Y. I. Wolf, and E. V. Koonin. No simple dependence between protein evolution rate and the number of protein–protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol. Biol. 3:1, 2003.
Kar, G., A. Gursoy, and O. Keskin. Human cancer protein–protein interaction network: a structural perspective. PLoS Comput. Biol. 5(12):e1000601, 2009.
Keskin, O., B. Ma, and R. Nussinov. Hot regions in protein–protein interactions: the organization and contribution of structurally conserved hot spot residues. J. Mol. Biol. 345(5):1281–1294, 2005.
Keskin, O., C. J. Tsai, H. Wolfson, and R. Nussinov. A new, structurally nonredundant, diverse data set of protein–protein interfaces and its implications. Protein Sci. 13(4):1043–1055, 2004.
Kim, P. M., L. J. Lu, Y. Xia, and M. B. Gerstein. Relating three-dimensional structures to protein networks provides evolutionary insights. Science 314(5807):1938–1941, 2006.
Kim, P. M., A. Sboner, Y. Xia, and M. Gerstein. The role of disorder in interaction networks: a structural analysis. Mol. Syst. Biol. 4:179, 2008.
Kleanthous, C. Protein–Protein Recognition, Frontiers in Molecular Biology. Oxford: Oxford University Press, 2000.
Lo Conte, L., C. Chothia, and J. Janin. The atomic structure of protein–protein recognition sites. J. Mol. Biol. 285(5):2177–2198, 1999.
Ma, B., T. Elkayam, H. Wolfson, and R. Nussinov. Protein–protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc. Natl Acad. Sci. USA 100(10):5772–5777, 2003.
Meszaros, B., P. Tompa, I. Simon, and Z. Dosztanyi. Molecular principles of the interactions of disordered proteins. J. Mol. Biol. 372(2):549–561, 2007.
Noble, W. S. What is a support vector machine? Nat. Biotechnol. 24(12):1565–1567, 2006.
Patil, A., and H. Nakamura. Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Lett. 580(8):2041–2045, 2006.
Reichmann, D., O. Rahat, S. Albeck, R. Meged, O. Dym, and G. Schreiber. The modular architecture of protein–protein binding interfaces. Proc. Natl Acad. Sci. USA 102(1):57–62, 2005.
Tsai, C. J., S. L. Lin, H. J. Wolfson, and R. Nussinov. A Dataset of Protein–Protein Interfaces Generated with a Sequence-Order-Independent Comparison Technique. J. Mol. Biol. 260(4):604–620, 1996.
Tsai, C. J., B. Ma, and R. Nussinov. Protein–Protein Interaction Networks: How Can a Hub Protein Bind So Many Different Partners? Trends Biochem. Sci. 34(12):594–600, 2009.
Tuncbag, N., A. Gursoy, E. Guney, R. Nussinov, and O. Keskin. Architectures and functional coverage of protein–protein interfaces. J. Mol. Biol. 381(3):785–802, 2008.
Tuncbag, N., A. Gursoy, and O. Keskin. Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 25(12):1513–1520, 2009.
Uetz, P., L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, and J. M. Rothberg. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623–627, 2000.
Wuchty, S. Evolution and topology in the yeast protein interaction network. Genome Res. 14(7):1310–1314, 2004.
Yu, H., P. Braun, M. A. Yildirim, I. Lemmens, K. Venkatesan, J. Sahalie, T. Hirozane-Kishikawa, F. Gebreab, N. Li, N. Simonis, T. Hao, J. F. Rual, A. Dricot, A. Vazquez, R. R. Murray, C. Simon, L. Tardivo, S. Tam, N. Svrzikapa, C. Fan, A. S. de Smet, A. Motyl, M. E. Hudson, J. Park, X. Xin, M. E. Cusick, T. Moore, C. Boone, M. Snyder, F. P. Roth, A. L. Barabasi, J. Tavernier, D. E. Hill, and M. Vidal. High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104–110, 2008.
Acknowledgments
We thank Nurcan Tuncbag for providing Protein G complexes. This project has been supported by TUBITAK (Research Grant No 109T343 and 109E207).
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Michael S. Detamore oversaw the review of this article.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Cukuroglu, E., Gursoy, A. & Keskin, O. Analysis of Hot Region Organization in Hub Proteins. Ann Biomed Eng 38, 2068–2078 (2010). https://doi.org/10.1007/s10439-010-0048-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-010-0048-9