Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Analysis of Hot Region Organization in Hub Proteins

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Protein interaction maps constructed from binary interactions reveal that some proteins are highly connected to others (acting as hub proteins), whereas some others have a few interactions (at the edges of the map). This paper addresses hub proteins from a structural point: interfaces. It investigates how hot spots are organized in hub proteins (hot regions). We annotate interfaces as the ones between two date-hubs (DD), two party hubs (PP), and two non-hubs (NN). We investigate the physico-chemical properties of these three types of interfaces focusing on the accessible surface area distribution, hot region organization, and amino acid composition differences. Results reveal that there are significant differences between DD and PP interfaces. More of the hot spots are organized into the hot regions in DD interfaces compared to PP ones. A high fraction of the interfaces are covered by hot regions in DD interfaces. There are more distinct hot regions in DDs. Since the same (or overlapping) DD interfaces should be used repeatedly, different hot regions can be used to bind to different partners. Further, these hot region characteristics can be used to predict whether a given hub interface is involved in a DD or a PP interface type with 80% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Ahmad, S., O. Keskin, A. Sarai, and R. Nussinov. Protein–DNA interactions: structural, thermodynamic and clustering patterns of conserved residues in DNA-binding proteins. Nucleic Acids Res. 36(18):5922–5932, 2008.

    Article  PubMed  CAS  Google Scholar 

  2. Bloom, J. D., and C. Adami. Apparent dependence of protein evolutionary rate on number of interactions is linked to biases in protein–protein interactions data sets. BMC Evol. Biol. 3:21, 2003.

    Article  PubMed  Google Scholar 

  3. Clackson, T., and J. A. Wells. A hot spot of binding energy in a hormone–receptor interface. Science 267(5196):383–386, 1995.

    Article  PubMed  CAS  Google Scholar 

  4. Ekman, D., S. Light, A. K. Bjorklund, and A. Elofsson. What properties characterize the hub proteins of the protein–protein interaction network of Saccharomyces cerevisiae? Genome Biol. 7(6):R45, 2006.

    Article  PubMed  CAS  Google Scholar 

  5. Fraser, H. B., D. P. Wall, and A. E. Hirsh. A simple dependence between protein evolution rate and the number of protein–protein interactions. BMC Evol. Biol. 3:11, 2003.

    Article  PubMed  Google Scholar 

  6. Gavin, A. C., M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J. M. Rick, A. M. Michon, C. M. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Brajenovic, H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M. A. Heurtier, R. R. Copley, A. Edelmann, E. Querfurth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-Furga. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147, 2002.

    Article  PubMed  CAS  Google Scholar 

  7. Gsponer, J., and M. M. Babu. The rules of disorder or why disorder rules. Prog. Biophys. Mol. Biol. 99(2–3):94–103, 2009.

    Article  PubMed  CAS  Google Scholar 

  8. Gunasekaran, K., C. J. Tsai, and R. Nussinov. Analysis of ordered and disordered protein complexes reveals structural features discriminating between stable and unstable monomers. J. Mol. Biol. 341(5):1327–1341, 2004.

    Article  PubMed  CAS  Google Scholar 

  9. Han, J. D., N. Bertin, T. Hao, D. S. Goldberg, G. F. Berriz, L. V. Zhang, D. Dupuy, A. J. Walhout, M. E. Cusick, F. P. Roth, and M. Vidal. Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430(6995):88–93, 2004.

    Article  PubMed  CAS  Google Scholar 

  10. Higurashi, M., T. Ishida, and K. Kinoshita. Identification of transient hub proteins and the possible structural basis for their multiple interactions. Protein Sci. 17(1):72–78, 2008.

    Article  PubMed  CAS  Google Scholar 

  11. Ito, T., T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98(8):4569–4574, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Jordan, I. K., Y. I. Wolf, and E. V. Koonin. No simple dependence between protein evolution rate and the number of protein–protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol. Biol. 3:1, 2003.

    Article  PubMed  Google Scholar 

  13. Kar, G., A. Gursoy, and O. Keskin. Human cancer protein–protein interaction network: a structural perspective. PLoS Comput. Biol. 5(12):e1000601, 2009.

    Article  PubMed  CAS  Google Scholar 

  14. Keskin, O., B. Ma, and R. Nussinov. Hot regions in protein–protein interactions: the organization and contribution of structurally conserved hot spot residues. J. Mol. Biol. 345(5):1281–1294, 2005.

    Article  PubMed  CAS  Google Scholar 

  15. Keskin, O., C. J. Tsai, H. Wolfson, and R. Nussinov. A new, structurally nonredundant, diverse data set of protein–protein interfaces and its implications. Protein Sci. 13(4):1043–1055, 2004.

    Article  PubMed  CAS  Google Scholar 

  16. Kim, P. M., L. J. Lu, Y. Xia, and M. B. Gerstein. Relating three-dimensional structures to protein networks provides evolutionary insights. Science 314(5807):1938–1941, 2006.

    Article  PubMed  CAS  Google Scholar 

  17. Kim, P. M., A. Sboner, Y. Xia, and M. Gerstein. The role of disorder in interaction networks: a structural analysis. Mol. Syst. Biol. 4:179, 2008.

    Article  PubMed  Google Scholar 

  18. Kleanthous, C. Protein–Protein Recognition, Frontiers in Molecular Biology. Oxford: Oxford University Press, 2000.

  19. Lo Conte, L., C. Chothia, and J. Janin. The atomic structure of protein–protein recognition sites. J. Mol. Biol. 285(5):2177–2198, 1999.

    Article  PubMed  CAS  Google Scholar 

  20. Ma, B., T. Elkayam, H. Wolfson, and R. Nussinov. Protein–protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc. Natl Acad. Sci. USA 100(10):5772–5777, 2003.

    Article  PubMed  CAS  Google Scholar 

  21. Meszaros, B., P. Tompa, I. Simon, and Z. Dosztanyi. Molecular principles of the interactions of disordered proteins. J. Mol. Biol. 372(2):549–561, 2007.

    Article  PubMed  CAS  Google Scholar 

  22. Noble, W. S. What is a support vector machine? Nat. Biotechnol. 24(12):1565–1567, 2006.

    Article  PubMed  CAS  Google Scholar 

  23. Patil, A., and H. Nakamura. Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Lett. 580(8):2041–2045, 2006.

    Article  PubMed  CAS  Google Scholar 

  24. Reichmann, D., O. Rahat, S. Albeck, R. Meged, O. Dym, and G. Schreiber. The modular architecture of protein–protein binding interfaces. Proc. Natl Acad. Sci. USA 102(1):57–62, 2005.

    Article  PubMed  CAS  Google Scholar 

  25. Tsai, C. J., S. L. Lin, H. J. Wolfson, and R. Nussinov. A Dataset of Protein–Protein Interfaces Generated with a Sequence-Order-Independent Comparison Technique. J. Mol. Biol. 260(4):604–620, 1996.

    Article  PubMed  CAS  Google Scholar 

  26. Tsai, C. J., B. Ma, and R. Nussinov. Protein–Protein Interaction Networks: How Can a Hub Protein Bind So Many Different Partners? Trends Biochem. Sci. 34(12):594–600, 2009.

    Article  PubMed  CAS  Google Scholar 

  27. Tuncbag, N., A. Gursoy, E. Guney, R. Nussinov, and O. Keskin. Architectures and functional coverage of protein–protein interfaces. J. Mol. Biol. 381(3):785–802, 2008.

    Article  PubMed  CAS  Google Scholar 

  28. Tuncbag, N., A. Gursoy, and O. Keskin. Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 25(12):1513–1520, 2009.

    Article  PubMed  CAS  Google Scholar 

  29. Uetz, P., L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, and J. M. Rothberg. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623–627, 2000.

    Article  PubMed  CAS  Google Scholar 

  30. Wuchty, S. Evolution and topology in the yeast protein interaction network. Genome Res. 14(7):1310–1314, 2004.

    Article  PubMed  CAS  Google Scholar 

  31. Yu, H., P. Braun, M. A. Yildirim, I. Lemmens, K. Venkatesan, J. Sahalie, T. Hirozane-Kishikawa, F. Gebreab, N. Li, N. Simonis, T. Hao, J. F. Rual, A. Dricot, A. Vazquez, R. R. Murray, C. Simon, L. Tardivo, S. Tam, N. Svrzikapa, C. Fan, A. S. de Smet, A. Motyl, M. E. Hudson, J. Park, X. Xin, M. E. Cusick, T. Moore, C. Boone, M. Snyder, F. P. Roth, A. L. Barabasi, J. Tavernier, D. E. Hill, and M. Vidal. High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104–110, 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nurcan Tuncbag for providing Protein G complexes. This project has been supported by TUBITAK (Research Grant No 109T343 and 109E207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Keskin.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (136 kb pdf)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cukuroglu, E., Gursoy, A. & Keskin, O. Analysis of Hot Region Organization in Hub Proteins. Ann Biomed Eng 38, 2068–2078 (2010). https://doi.org/10.1007/s10439-010-0048-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0048-9

Keywords

Navigation