Abstract
Process mining is an emerging area that synergically combines model-based and data-oriented analysis techniques to obtain useful insights on how business processes are executed within an organization. Through process mining, decision makers can discover process models from data, compare expected and actual behaviors, and enrich models with key information about their actual execution. To be applicable, process mining techniques require the input data to be explicitly structured in the form of an event log, which lists when and by whom different case objects (i.e., process instances) have been subject to the execution of tasks. Unfortunately, in many real world set-ups, such event logs are not explicitly given, but are instead implicitly represented in legacy information systems. To apply process mining in this widespread setting, there is a pressing need for techniques able to support various process stakeholders in data preparation and log extraction from legacy information systems. The purpose of this paper is to single out this challenging, open issue, and didactically introduce how techniques from intelligent data management, and in particular ontology-based data access, provide a viable solution with a solid theoretical basis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Small and medium-sized enterprises.
- 2.
- 3.
Enterprise Resource Planning.
- 4.
Customer Relationship Management.
- 5.
Supply Chain Management.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
We consider here the case of an information system consisting of a single relational data source. Multiple data sources can be wrapped by a federation tool and presented as a single source.
- 24.
In \(\textit{DL-Lite}_{\mathcal {{A}}}\), features are actually called attributes. Here we use the term “feature” to avoid confusion with attributes of UML (see later).
- 25.
See http://www.omg.org/spec/UML/2.5/ for the latest version of UML at the moment of writing.
- 26.
If the roles of the association are not specified in the UML class diagram, we may use arbitrary fresh DL role names, each of which is identified by the name of the association and the component.
- 27.
- 28.
The formal counterpart of such an SQL query is a first-order logic (FOL) query with distinguished variables \(\vec {x}\).
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
References
Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013)
Weske, M.: Business Process Management - Concepts, Languages, Architectures, 2nd edn. Springer, Heidelberg (2012)
van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28108-2_19
van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016)
IEEE Computational Intelligence Society: IEEE Standard for eXtensible Event Stream (XES) for Achieving Interoperability in Event Logs and Event Streams. IEEE Std 1849–2016 (2016). i–50
Poggi, A., Lembo, D., Calvanese, D., Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008). doi:10.1007/978-3-540-77688-8_5
Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R.: Ontologies and databases: the DL-Lite approach. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03754-2_7
Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M., Rodriguez-Muro, M., Xiao, G.: Ontop: answering SPARQL queries over relational databases. Semant. Web J. 8(3), 471–487 (2017)
Calvanese, D., Kalayci, T.E., Montali, M., Tinella, S.: Ontology-based data access for extracting event logs from legacy data: the onprom tool and methodology. In: Abramowicz, W. (ed.) BIS 2017. LNBIP, vol. 288, pp. 220–236. Springer, Heidelberg (2017). https://www.springer.com/us/book/9783319593357
van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Process and deviation exploration with inductive visual miner. In: Proceedings of BPM Demo Sessions. CEUR Workshop Proceedings, vol. 1295, p. 46. CEUR-WS.org (2014). http://ceur-ws.org/
Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM\(^2\): a process mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015). doi:10.1007/978-3-319-19069-3_19
Verbeek, H.M.W., Buijs, J.C.A.M., Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011). doi:10.1007/978-3-642-17722-4_5
Dongen, B.F., Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005). doi:10.1007/11494744_25
van der Aalst, W.M.P., Bolt, A., van Zelst, S.J.: RapidProM: Mine your processes and not just your data. CoRR Technical Report abs/1703.03740, arXiv.org e-Print archive, March 2017. http://arxiv.org/abs/1703.03740
Günther, C.W., Rozinat, A.: Disco: discover your processes. In; Lohmann, N., Moser, S. (eds.) Proceedings of the Demonstration Track of the 10th International Conference on Business Process Management (BPM). CEUR Workshop Proceedings, vol. 940, pp. 40–44 (2012). http://ceur-ws.org/
Günther, C.W.: XES Standard Definition Version 1.0. Technical report, Fluxicon Process Laboratories, November 2009. http://www.xes-standard.org
van Dongen, B.F., van der Aalst, W.M.P.: A meta model for process mining data. In: Proceedings of EMOI - INTEROP. CEUR Workshop Proceedings, vol. 160. CEUR-WS.org (2005). http://ceur-ws.org/
Günther, C.W., Verbeek, E.: XES Standard Definition Version 2.0. Technical report, Fluxicon Process Laboratories, March 2014. http://www.xes-standard.org
Günther, C.W., Aalst, W.M.P.: A generic import framework for process event logs. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 81–92. Springer, Heidelberg (2006). doi:10.1007/11837862_10
Bao, J., et al.: OWL 2 Web Ontology Language document overview, 2nd edn. W3C Recommendation, World Wide Web Consortium, December 2012. http://www.w3.org/TR/owl2-overview/
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press (2003)
Calvanese, D.: Query answering over description logic ontologies. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 1–17. Springer, Cham (2014). doi:10.1007/978-3-319-11558-0_1
Vardi, M.Y.: The complexity of relational query languages. In: Proceedings of the 14th ACM SIGACT Symposium on Theory of Computing (STOC), pp. 137–146 (1982)
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning 39(3), 385–429 (2007)
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. Artif. Intell. 195, 335–360 (2013)
Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology Language profiles, 2nd edn. W3C Recommendation, World Wide Web Consortium, December 2012. http://www.w3.org/TR/owl2-profiles/
Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation formalisms. J. Artif. Intell. Res. 11, 199–240 (1999)
Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artif. Intell. 168(1–2), 70–118 (2005)
Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ. Co. (1995)
Antonioli, N., Castanò, F., Coletta, S., Grossi, S., Lembo, D., Lenzerini, M., Poggi, A., Virardi, E., Castracane, P.: Ontology-based data management for the Italian public debt. In: Proceedings of the 8th International Conference on Formal Ontology in Information Systems (FOIS). Frontiers in Artificial Intelligence and Applications, vol. 267, pp. 372–385. IOS Press (2014)
Gottlob, G., Kikot, S., Kontchakov, R., Podolskii, V.V., Schwentick, T., Zakharyaschev, M.: The price of query rewriting in ontology-based data access. Artif. Intell. 213, 42–59 (2014)
Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach to query answering in DL-Lite. In: Proceedings of the 12th International Conference on the Principles of Knowledge Representation and Reasoning (KR), pp. 247–257 (2010)
Rodriguez-Muro, M., Calvanese, D.: High performance query answering over DL-Lite ontologies. In: Proceedings of the 13th International Conference on the Principles of Knowledge Representation and Reasoning (KR), pp. 308–318 (2012)
Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings. J. Web Semant. 33, 141–169 (2015)
Syamsiyah, A., van Dongen, B.F., van der Aalst, W.M.P.: DB-XES: enabling process discovery in the large. In: Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.) Proceedings of the 6th International Symposium on Data-driven Process Discovery and Analysis (SIMPDA). CEUR Workshop Proceedings, vol. 1757, pp. 63–77 (2016). http://ceur-ws.org/
Jiménez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I., Pinkel, C., Skjæveland, M.G., Thorstensen, E., Mora, J.: BootOX: Bootstrapping OWL 2 Ontologies and R2RML Mappings from Relational Databases. In Villata, S., Pan, J.Z., Dragoni, M. (eds.) Proceedings of the 14th International Semantic Web Conference Posters & Demonstrations Track (ISWC). CEUR Workshop Proceedings, vol. 1486 (2015). http://ceur-ws.org/
Acknowledgements
This research has been partially supported by the Euregio IPN12 “KAOS: Knowledge-Aware Operational Support” project, which is funded by the “European Region Tyrol-South Tyrol-Trentino” (EGTC) under the first call for basic research projects, and by the UNIBZ internal project “OnProm (ONtology-driven PROcess Mining)”. We thank Wil van der Aalst for the interesting discussions and insights on the problem of extracting event logs from legacy information systems.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Calvanese, D., Kalayci, T.E., Montali, M., Santoso, A. (2017). OBDA for Log Extraction in Process Mining. In: Ianni, G., et al. Reasoning Web. Semantic Interoperability on the Web. Reasoning Web 2017. Lecture Notes in Computer Science(), vol 10370. Springer, Cham. https://doi.org/10.1007/978-3-319-61033-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-61033-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61032-0
Online ISBN: 978-3-319-61033-7
eBook Packages: Computer ScienceComputer Science (R0)