Abstract
Over the past few decades, the application of Artificial Immune Systems (AIS) and Artificial Neural Networks (ANN) has been growing rapidly in different domains. We sincerely believe that integration of these both techniques can allow constructing the Intelligent Cyber Defense System. In this paper an original method for detecting the network attacks and malicious code is described. The method is based on main principles of AIS where immune detectors have an ANN’s structure. The main goal of proposed approach is to detect previously unknown (novel) cyber-attack (malicious code, intrusion detection, etc.). The proposed Intelligent Cyber Defense System can improve the reliability of intrusion detection in computer systems and, as a result, it may reduce financial losses of companies from cyber attacks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Center for Internet Security. http://cisecurity.org
Cybercrime in the world. http://www.tadviser.ru/index.php (in Russian)
Symantec it estimated the annual losses from cybercrime at $ 114 billion. http://www.companion.ua/articles/content?id=162264 (in Russian)
Forbes experts have chosen the most high-profile cyber attacks recently. http://www.securitylab.ru/news/444700.php (in Russian)
Unuchek, R., Garnaeva, M., Makrushin, D., Sinitsyn, F., Liskin, A.: IT threat evolution Q3 2016. Statistics. https://securelist.com/analysis/quarterly-malware-reports/76513/it-threat-evolution-q3-2016-statistics
Worm.Win32.Stuxnet. https://threats.kaspersky.com/en/threat/Worm.Win32.Stuxnet
Shiels, M.: Cyber-sabotage and espionage top 2011 security fears. http://www.bbc.co.uk/news/technology-12056594
W32.Koobface. http://www.symantec.com/security_response/writeup.jsp?docid=2008-080315-0217-99
IBM X-Force 2012: Trend and Risk Report. https://www.ibm.com/ibm/files/I218646H25649F77/Risk_Report.pdf
Naraine, R.: Duqu FAQ. http://www.securelist.com/en/blog/208193178/Duqu_FAQ
Kaspersky Security Bulletin. Malware Evolution 2011 (2011). http://securelist.com/analysis/kaspersky-security-bulletin/36494/kaspersky-security-bulletin-malware-evolution-2011/
KDD Cup 1999 Data (1999). http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
Tavallaee, M., Bagheri, E., Lu, W., et al.: A detailed analysis of the KDD CUP 99 data set. In: Proceedings of the IEEE Symposium on Computational Intelligence in Security and Defense Applications (CISDA 2009), pp. 1–8 (2009). doi:10.1109/CISDA.2009.5356528
Lia, L.B., Chang, R.I., Kouh, J.S.: Detecting network intrusions using signal processing with query-based sampling filter. EURASIP J. Adv. Sig. Process., Article ID 735283, 1–8 (2009). Hindawi Publishing Corporation
Laheeb, M.I.: Anomaly network intrusion detection system based on distributed time-delay neural network. J. Eng. Sci. Technol. 5(4), 457–471 (2010)
Cannady, J.: Artificial neural networks for misuse detection. In: Proceedings of the 21st National Information Systems Security Conference, Arlington, VA, USA, 5–8 October 1998, pp. 368–381 (1998)
Chen, W.H., Hsu, S.H., Shen, H.P.: Application of SVM and ANN for intrusion detection. Comput. Oper. Res. 32(10), 2617–2634 (2005)
Mukkamalaa, S., Sung, A.H., Abraham, A.: Intrusion detection using an ensemble of intelligent paradigms. J. Network Comput. Appl. 28(2), 167–182 (2005)
Lorenzo-Fonseca, I., Maciá-Pérez, F., Mora-Gimeno, F.J., Lau-Fernández, R., Gil-Martínez-Abarca, J.A., Marcos-Jorquera, D.: Intrusion detection method using neural networks based on the reduction of characteristics. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 1296–1303. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02478-8_162
Kang, B.-D., Lee, J.-W., Kim, J.-H., Kwon, O.-H., Seong, C.-Y., Park, S.-M., Kim, S.-K.: A mutated intrusion detection system using principal component analysis and time delay neural network. In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3973, pp. 246–254. Springer, Heidelberg (2006). doi:10.1007/11760191_36
Grediaga, Á., Ibarra, F., García, F., Ledesma, B., Brotóns, F.: Application of neural networks in network control and information security. In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3973, pp. 208–213. Springer, Heidelberg (2006). doi:10.1007/11760191_31
Zhang, C., Jiang, J., Kamel, M.: Comparison of BPL and RBF network in intrusion detection system. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS, vol. 2639, pp. 466–470. Springer, Heidelberg (2003). doi:10.1007/3-540-39205-X_79
Kohonen, T.: The self organizing map. Proc. Inst. Electr. E1ectronics Eng. 78, 1464–1480 (1990)
Cannady, J.: Applying CMAC-based online learning to intrusion detection. In: Proceedings of the International Joint Conference on Neural Networks, (IJCNN 2000), IEEE-INNS-ENNS, vol. 5, pp. 405–410 (2000)
Debar, H., Becker, M., Siboni, D.: A neural network component for an intrusion detection system. In: Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy, pp. 240–250 (1992)
Cheng, E., Jin, H., Han, Z., Sun, J.: Network-based anomaly detection using an elman network. In: Lu, X., Zhao, W. (eds.) ICCNMC 2005. LNCS, vol. 3619, pp. 471–480. Springer, Heidelberg (2005). doi:10.1007/11534310_51
Höglund, A.J., Hätönen, K., Sorvari, A.S.: A computer host-based user anomaly detection system using the self-organizing map. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN 2000), vol. 5, pp. 411–416 (2000)
Ramadas, M., Ostermann, S., Tjaden, B.: Detecting anomalous network traffic with self-organizing maps. In: Vigna, G., Kruegel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 36–54. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45248-5_3
Sarasamma, S.T., Zhu, Q.A., Huff, J.: Hierarchical Kohonen net for anomaly detection in network security. IEEE Trans. Syst. Man Cybern. Part B 35(2), 302–312 (2005)
Jirapummin, C., Wattanapongsakorn, N., Kanthamanon, P.: Hybrid neural networks for intrusion detection system. In: Proceedings of the International Technical Conference on Circuits/Systems, Computers and Communications, Thailand, pp. 928–931 (2002)
Horeis, T.: Intrusion detection with neural networks – Combination of self-organizing maps and radial basis function networks for human expert integration, Technical report. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.191&rep=rep1&type=pdf
Chimphlee, W., Abdullah, A.H., Sap, M.N.M.: Anomaly-based intrusion detection using fuzzy rough clustering. In: Proceedings of the International Conference in Hybrid Information Technology (ICHIT 2006), vol. 1, pp. 329–334 (2006)
Dickerson, J.E., Juslin, J., Koukousoula, J., Dickerson, J.A. Fuzzy intrusion detection. In: Proceedings of the 20th International Conference of the North American Fuzzy Information Society (NAFIPS 2001) and Joint the 9th IFSA World Congress, 3, Vancouver, Canada, vol. 3, pp. 1506–1510 (2001)
Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 202–212 (1994)
Forrest, S., Hofmeyr, S., Somayaji, A.: Computer Immunology. Commun. ACM 40(10), 88–96 (1997)
Hofmeyr, S., Forrest, S.: Immunity by design. In: Proceeding of the Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 1289–1296 (1999)
Burnet, F.: The Clonal Selection Theory of Acquired Immunity. Cambridge University Press, Cambridge (1959)
Burnet, F.: Clonal selection and after. In: Bell, G., Perelson, A., Pimbley, G. (eds.) Theoretical Immunology, pp. 63–85. Marcel Dekker Inc., New York (1978)
Jerne, N.: Towards a network theory of the immune system. Ann. Immunology (Inst. Pasteur) 125C, 373–389 (1974)
Greensmith, J., Whitbrook, A., Aickelin, U.: Artificial immune systems. In: Handbook of Metaheuristics, 2nd edn., vol. 14, pp. 421–448. Springer, New York (2010)
Greensmith, J., Aickelin, U.: The deterministic dendritic cell algorithm. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 291–302. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85072-4_26
Coico, R., Sunshine, G., Benjamini, E.: Immunology: A Short Course. Wiley-Liss (2003)
Murphy, K., Travers, P., Walport, M.: Janeway’s Immunobiology. Garland Science, 7th edn. (2008)
Stibor, T., Mohr, P., Timmis, J., Eckert, C.: Is negative selection appropriate for anomaly detection? In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2005), pp. 321–328. Springer (2005)
Harmer, P., Williams, P., Gunsch, G., Lamont, G.: An artificial immune system architecture for computer security applications. IEEE Trans. Evol. Comput. 6(3), 252–280 (2002)
Balthrop, J., Esponda, F., Forrest, S., Glickman, M.: Coverage and generalization in an artificial immune system. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 3–10 (2002)
Stibor, T., Bayarou, K., Eckert, C.: An investigation of r-chunk detector generation on higher alphabets. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2004), pp. 299–307 (2004)
Gonzales, F., Dasgupta, D., Gomez, J.: The effect of binary matching rules in negative selection. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2003), pp. 198–209 (2003)
Kim, J., Bentley, P., Aickelin, U., et al.: Immune system approaches to intrusion detection – A review. Natural Comput. 6(4), 413–466 (2007). Springer
Haykin, S.: Neural Networks: A Comprehensive Foundation, p. 842. Prentice Hall, Upper Saddle River (1999)
Golovko, V., Bezobrazov, S., Kachurka, P., Vaitsekhovich, L.: Neural network and artificial immune systems for malware and network intrusion detection. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds.) Advances in Machine Learning II. SCI, vol. 263, pp. 485–513. Springer, Heidelberg (2010)
Komar, M., Golovko, V., Sachenko, A., Bezobrazov, S.: Development of neural network immune detectors for computer attacks recognition and classification. In: Proceedings of the 7th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS-2013), Berlin, Germany, vol. 2, pp. 665–668 (2013)
Komar, M., Sachenko, A., Golovko, V., Bezobrazov, S.: Method of detection of computer attacks by the neural network artificial immune system, Pat. Number 109640 Ukraine (2015) (in Ukrainian)
Komar, M., Sachenko, A., Bezobrazov, S., Golovko, V., Intelligent cyber defense system. In: Proceedings of the 12th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer (ICTERI 2016), Kyiv, Ukraine, 21–24 June, pp. 534–549. CEUR-WS.org (2016)
Scholz, M., Fraunholz, M., Selbig, J.: Nonlinear principal component analysis: neural network models and applications. In: Gorban, A.N., Kégl, B., Wunsch, D.C., Zinovyev, A.Y. (eds.) Principal Manifolds for Data Visualization and Dimension Reduction, pp. 44–67. Springer, Heidelberg (2008)
Komar, M., Golovko, V., Sachenko, A., Bezobrazov S.: Intelligent system for detection of networking intrusion. In: Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS-2011), Prague, vol. 1, pp. 74–377. Czech Republic (2011)
Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)
Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)
Golovko, V., Kroshchanka, A., Rubanau, U., Jankowski, S.: A learning technique for deep belief neural networks. In: Golovko, V., Imada, A. (eds.) ICNNAI 2014. CCIS, vol. 440, pp. 136–146. Springer, Cham (2014). doi:10.1007/978-3-319-08201-1_13
Sachenko A., Komar M.: Intrusion detection system based on neural networks. Zeszyty Naukowe. Organizacja i Zarządzanie, Politechnika Śląska 68, 377–386 (2014)
Fawcett, T.: Using rule sets to maximize ROC Performance. In: Proceedings of the IEEE International Conference on Data Mining (ICDM–2001), Los Alamitos, pp. 131–138 (2001)
Acknowledgements
This work is running under a grant by the Ministry of Education and Sciences, Ukraine, 2016–2017 as well as it’s supported by the Belarusian State Research Program “Informatics and Space”, 2011–2015.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Komar, M., Sachenko, A., Bezobrazov, S., Golovko, V. (2017). Intelligent Cyber Defense System Using Artificial Neural Network and Immune System Techniques. In: Ginige, A., et al. Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2016. Communications in Computer and Information Science, vol 783. Springer, Cham. https://doi.org/10.1007/978-3-319-69965-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-69965-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69964-6
Online ISBN: 978-3-319-69965-3
eBook Packages: Computer ScienceComputer Science (R0)