Abstract
In this paper, we present the performance comparison results of the backpropagation learning (BPL) algorithm in a multilayer perceptron (MLP) neural network and the radial basis functions (RBF) network for intrusion detection. The results show that RBF network improves the performance of intrusion detection systems (IDSs) in anomaly detection with a high detection rate and a low false positive rate. RBF network requires less training time and can be optimized to balance the detection and the false positive rates.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Jones, A.K., Sielken, R.S.: Computer system intrusion detection: A survey. Technical report, University of Virginia Computer Science Department (1999)
Cannady, J.: Next generation intrusion detection: Autonomous reinforcement learning of network attacks. In: Proceedings of the 23rd National Information Systems Security Conference (NISSC 2000). (2000)
Cannady, J.: Artificial neural networks for misuse detection. In: Proceedings of the 1998 National Information Systems Security Conference (NISSC’98) October 5–8 1998. Arlington, VA. (1998) 443–456
Ryan, J., Lin, M.J., Miikkulainen, R.: Intrusion detection with neural networks. In Jordan, M.I., Kearns, M.J., Solla, S.A., eds.: Advances in Neural Information Processing Systems. Volume 10., The MIT Press (1998)
Ghosh, A., Wanken, J., Charron, F.: Detecting anomalous and unknown intrusions against programs. In: Proceedings of the 1998 Annual Computer Security Applications Conference (ACSAC’98), December 1998., Los Alamitos, CA, USA: IEEE Comput. Soc, 1998 (1998) 259–267
Fan, W., Miller, M., Stolfo, S., Lee, W., Chan, P.: Using artificial anomalies to detect unknown and known network intrusions. In: IEEE Intl. Conf. Data Mining. (2001)
Stolfo, S., Fan, W., Lee, W., Prodromidis, A., Chan, P.: Cost-based modeling for fraud and instrusion detection: Results from the jam project. In: DARPA Information Survivability Conference and Exposition. Volume II., IEEE Computer Press (2000) 130–144
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, C., Jiang, J., Kamel, M. (2003). Comparison of BPL and RBF Network in Intrusion Detection System. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2003. Lecture Notes in Computer Science(), vol 2639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39205-X_79
Download citation
DOI: https://doi.org/10.1007/3-540-39205-X_79
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-14040-5
Online ISBN: 978-3-540-39205-7
eBook Packages: Springer Book Archive