Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparison of BPL and RBF Network in Intrusion Detection System

  • Conference paper
  • First Online:
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2639))

Abstract

In this paper, we present the performance comparison results of the backpropagation learning (BPL) algorithm in a multilayer perceptron (MLP) neural network and the radial basis functions (RBF) network for intrusion detection. The results show that RBF network improves the performance of intrusion detection systems (IDSs) in anomaly detection with a high detection rate and a low false positive rate. RBF network requires less training time and can be optimized to balance the detection and the false positive rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones, A.K., Sielken, R.S.: Computer system intrusion detection: A survey. Technical report, University of Virginia Computer Science Department (1999)

    Google Scholar 

  2. Cannady, J.: Next generation intrusion detection: Autonomous reinforcement learning of network attacks. In: Proceedings of the 23rd National Information Systems Security Conference (NISSC 2000). (2000)

    Google Scholar 

  3. Cannady, J.: Artificial neural networks for misuse detection. In: Proceedings of the 1998 National Information Systems Security Conference (NISSC’98) October 5–8 1998. Arlington, VA. (1998) 443–456

    Google Scholar 

  4. Ryan, J., Lin, M.J., Miikkulainen, R.: Intrusion detection with neural networks. In Jordan, M.I., Kearns, M.J., Solla, S.A., eds.: Advances in Neural Information Processing Systems. Volume 10., The MIT Press (1998)

    Google Scholar 

  5. Ghosh, A., Wanken, J., Charron, F.: Detecting anomalous and unknown intrusions against programs. In: Proceedings of the 1998 Annual Computer Security Applications Conference (ACSAC’98), December 1998., Los Alamitos, CA, USA: IEEE Comput. Soc, 1998 (1998) 259–267

    Google Scholar 

  6. Fan, W., Miller, M., Stolfo, S., Lee, W., Chan, P.: Using artificial anomalies to detect unknown and known network intrusions. In: IEEE Intl. Conf. Data Mining. (2001)

    Google Scholar 

  7. Stolfo, S., Fan, W., Lee, W., Prodromidis, A., Chan, P.: Cost-based modeling for fraud and instrusion detection: Results from the jam project. In: DARPA Information Survivability Conference and Exposition. Volume II., IEEE Computer Press (2000) 130–144

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, C., Jiang, J., Kamel, M. (2003). Comparison of BPL and RBF Network in Intrusion Detection System. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2003. Lecture Notes in Computer Science(), vol 2639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39205-X_79

Download citation

  • DOI: https://doi.org/10.1007/3-540-39205-X_79

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-14040-5

  • Online ISBN: 978-3-540-39205-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics