Abstract
This paper generalizes a method originally developed by the authors to perform data driven localization of leakages in urban Water Distribution Networks. The method is based on clustering to perform exploratory analysis and a pool of Support Vector Machines to process on line sensors readings. The performance depends on certain hyperparameters which have been considered as decision variables in a sequential model based optimization process. The objective function is related to clustering performance, computed through an external validity index defined according to the leakage localization goal. Thus, as usual in hyperparameters tuning of machine learning algorithms, the objective function is black box. In this paper it is shown how a Bayesian framework offers not only a good performance but also the flexibility to consider in the optimization loop also the automatic configuration of the algorithm. Both Gaussian Processes and Random Forests have been considered to fit the surrogate model of the objective function, while results from a simple grid search have been considered as baseline.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Xia, L., Xiao-dong, W., Xin-hua, Z., Guo-jin, L.: Bayesian theorem based on-line leakage detection and localization of municipal water supply network. Water Wastewater Eng. 12 (2006)
Sivapragasam, C., Maheswaran, R., Venkatesh, V.: ANN-based model for aiding leak detection in water distribution networks. Asian J. Water Environ. Pollut. 5(3), 111–114 (2007)
Xia, L., Guo-jin, L.: Leak detection of municipal water supply network based on the cluster-analysis and fuzzy pattern recognition. In: 2010 International Conference on E-Product E-Service and E-Entertainment (ICEEE), vol. 1(5), pp. 7–9 (2010)
Lijuan, W., Hongwei, Z., Hui, J.: A leak detection method based on EPANET and genetic algorithm in water distribution systems. In: Wu, Y. (ed.) Software Engineering and Knowledge Engineering: Theory and Practice. AISC, vol. 114, pp. 459–465. Springer, Heidelberg (2012). doi:10.1007/978-3-642-03718-4_57
Nasir, A., Soong, B.H., Ramachandran, S.: Framework of WSN based human centric cyber physical in-pipe water monitoring system. In: 11th International Conference on Control, Automation, Robotics and Vision, pp. 1257–1261 (2010)
Soldevila, A., Fernandez-Canti, R.M., Blesa, J., Tornil-Sin, S., Puig, V.: Leak localization in water distribution networks using Bayesian classifiers. J. Process Control 55, 1–9 (2017)
Franzin, A., Cáceres, L.P., Stützle, T.: Effect of Transformations of Numerical Parameters in Automatic Algorithm Configuration, IRIDIA Technical Report 2017-006 (2017)
Bagnall, A., Cawley, G.C.: On the Use of Default Parameter Settings in the Empirical Evaluation of Classification Algorithms. arXiv:1703.06777v1 [cs.LG] (2017)
Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints - Sequential and Parallel Algorithms. Springer, US (2000)
Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, US (2008)
Locatelli, M., Schoen, F.: Global Optimization - Theory, Algorithms and Applications. MOS-SIAM Series on Optimization. Society for Industrial & Applied Mathematics, Philadelphia (2013)
Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)
Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth diagonal auxiliary functions. Commun. Nonlinear Sci. Numer. Simul. 21(1), 99–111 (2015)
Barkalov, K., Polovinkin, A., Meyerov, I., Sidorov, S., Zolotykh, N.: SVM regression parameters optimization using parallel global search algorithm. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 154–166. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39958-9_14
Gillard, J.W., Kvasov, D.E.: Lipschitz optimization methods for fitting a sum of damped sinusoids to a series of observations. Stat. Interface 10, 59–70 (2017)
Zabinsky, Z.B.: Stochastic Adaptive Search for Global Optimization, vol. 72. Springer, New York (2013)
Steponavičė, I., Shirazi-Manesh, M., Hyndman, R.J., Smith-Miles, K., Villanova, L.: On sampling methods for costly multiobjective black-box optimization. In: Pardalos, P.M., Zhigljavsky, A., Zilinskas, J. (eds.) Advances in Stochastic and Deterministic Global Optimization. SOIA, vol. 107, pp. 273–296. Springer, Cham (2016). doi:10.1007/978-3-319-29975-4_15
Csendes, T., Pál, L., Sendin, J.O.H., Banga, J.R.: The GLOBAL optimization method revisited. Optim. Lett. 2(4), 445–454 (2008)
Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. arXiv preprint arXiv:1603.06560 (2016)
Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Advances in Neural Information Processing Systems, pp. 2962–2970 (2015)
Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: A review of bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)
Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)
Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)
Mockus, J.: On Bayesian methods of optimization. In: Dixon, L.C.W., Szegö, G.P. (eds.) Towards Global Optimization. North-Holland, Amsterdam (1975)
Stützle, T.: Automated algorithm configuration: advances and prospects. In: Camacho, D., Braubach, L., Venticinque, S., Badica, C. (eds.) Intelligent Distributed Computing VIII. SCI, vol. 570, p. 5. Springer, Cham (2015). doi:10.1007/978-3-319-10422-5_2
Mala-Jetmarova, H., Sultanova, N., Savic, D.: Lost in optimization of water distribution systems? a literature review of system operations. Environ. Modell. Softw. 93, 209–254 (2017)
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3_40
Candelieri, A., Soldi, D., Archetti, F.: Cost-effective sensors placement and leak localization - The Neptun pilot of the ICeWater project. J. Water Supply: Res. Technol. AQUA 64(5), 567–582 (2015)
Candelieri, A., Soldi, D., Conti, D., Archetti, F.: Analytical leakages localization in water distribution networks through spectral clustering and support vector machines. The icewater approach. Procedia Eng. 89, 1080–1088 (2014)
Candelieri, A., Archetti, F., Messina, E.: Improving leakage management in urban water distribution networks through data analytics and hydraulic simulation. WIT Trans. Ecol. Environ. 171, 107–117 (2013)
Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 551–556 (2004)
Žilinskas, A.: On similarities between two models of global optimization: statistical models and radial basis functions. J. Global Optim. 48(1), 173–182 (2010)
Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.M., Perona, I.: An extensive comparative study of cluster validity indices. Pattern Recogn. 46(1), 243–256 (2013)
Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319 (1998)
Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)
Horn, D., Wagner, T., Biermann, D., Weihs, C., Bischl, B.: Model-based multi-objective optimization: taxonomy, multi-point proposal, toolbox and benchmark. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 64–78. Springer, Cham (2015). doi:10.1007/978-3-319-15934-8_5
Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize optimization. In: Tenne, Y., Goh, C.K. (eds.) Computational Intelligence in Expensive Optimization Problems. ALO, vol. 2, pp. 131–162. Springer, Heidelberg (2010). doi:10.1007/978-3-642-10701-6_6
Bischl, B., Wessing, S., Bauer, N., Friedrichs, K., Weihs, C.: MOI-MBO: multiobjective infill for parallel model-based optimization. In: Pardalos, Panos M., Resende, M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) LION 2014. LNCS, vol. 8426, pp. 173–186. Springer, Cham (2014). doi:10.1007/978-3-319-09584-4_17
Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyperparameter optimization. In: Advances in Neural Information Processing Systems, pp. 2546–2554 (2011)
Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M.: mlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions. arXiv preprint arXiv:1703.03373 (2017)
Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of ACM SIGKDD, pp. 847–855 (2013)
Lang, M., Kotthaus, H., Marwedel, P., Weihs, C., Rahnenführer, J., Bischl, B.: Automatic model selection for high-dimensional survival analysis. J. Stat. Comput. Simul. 85(1), 62–76 (2015)
Horn, D., Bischl, B.: Multi-objective parameter configuration of machine learning algorithms using model-based optimization. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016)
Richter, J., Kotthaus, H., Bischl, B., Marwedel, P., Rahnenführer, J., Lang, M.: Faster model-based optimization through resource-aware scheduling strategies. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 267–273. Springer, Cham (2016). doi:10.1007/978-3-319-50349-3_22
Kvasov, D.E., Sergeyev, Y.D.: Deterministic approaches for solving practical black-box global optimization problems. Adv. Eng. Softw. 80, 58–66 (2015)
Wang, Z., Zoghi, M., Hutter, F., Matheson, D., De Freitas, N.: Bayesian optimization in high dimensions via random embeddings. In: AAAI Press/International Joint Conferences on Artificial Intelligence (2013)
Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets. arXiv:1605.07079 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Candelieri, A., Giordani, I., Archetti, F. (2017). Automatic Configuration of Kernel-Based Clustering: An Optimization Approach. In: Battiti, R., Kvasov, D., Sergeyev, Y. (eds) Learning and Intelligent Optimization. LION 2017. Lecture Notes in Computer Science(), vol 10556. Springer, Cham. https://doi.org/10.1007/978-3-319-69404-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-69404-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69403-0
Online ISBN: 978-3-319-69404-7
eBook Packages: Computer ScienceComputer Science (R0)