Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sequential Model-Based Optimization for General Algorithm Configuration

  • Conference paper
Learning and Intelligent Optimization (LION 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6683))

Included in the following conference series:

Abstract

State-of-the-art algorithms for hard computational problems often expose many parameters that can be modified to improve empirical performance. However, manually exploring the resulting combinatorial space of parameter settings is tedious and tends to lead to unsatisfactory outcomes. Recently, automated approaches for solving this algorithm configuration problem have led to substantial improvements in the state of the art for solving various problems. One promising approach constructs explicit regression models to describe the dependence of target algorithm performance on parameter settings; however, this approach has so far been limited to the optimization of few numerical algorithm parameters on single instances. In this paper, we extend this paradigm for the first time to general algorithm configuration problems, allowing many categorical parameters and optimization for sets of instances. We experimentally validate our new algorithm configuration procedure by optimizing a local search and a tree search solver for the propositional satisfiability problem (SAT), as well as the commercial mixed integer programming (MIP) solver CPLEX. In these experiments, our procedure yielded state-of-the-art performance, and in many cases outperformed the previous best configuration approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed integer programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: A heuristic repair method for constraint-satisfaction and scheduling problems. AIJ 58(1), 161–205 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Gratch, J., Dejong, G.: Composer: A probabilistic solution to the utility problem in speed-up learning. In: Proc. of AAAI 1992, pp. 235–240 (1992)

    Google Scholar 

  4. Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental design and local search. Operations Research 54(1), 99–114 (2006)

    Article  MATH  Google Scholar 

  5. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race: an overview. In: Empirical Methods for the Analysis of Optimization Algorithms. Springer, Berlin (2010)

    Google Scholar 

  6. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Proc. of GECCO 2002, pp. 11–18 (2002)

    Google Scholar 

  7. Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based on local search. In: Proc. of AAAI 2007, pp. 1152–1157 (2007)

    Google Scholar 

  8. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. JAIR 36, 267–306 (2009)

    MATH  Google Scholar 

  9. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Hutter, F., Babić, D., Hoos, H.H., Hu, A.J.: Boosting Verification by Automatic Tuning of Decision Procedures. In: Proc. of FMCAD 2007, pp. 27–34 (2007)

    Google Scholar 

  11. KhudaBukhsh, A., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: Automatically building local search SAT solvers from components. In: Proc. of IJCAI 2009 (2009)

    Google Scholar 

  12. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black box functions. Journal of Global Optimization 13, 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization. In: Proc. of CEC 2005, pp. 773–780. IEEE Press, Los Alamitos (2005)

    Google Scholar 

  14. Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.P.: An experimental investigation of model-based parameter optimisation: SPO and beyond. In: Proc. of GECCO 2009 (2009)

    Google Scholar 

  15. Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.P.: Time-bounded sequential parameter optimization. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 281–298. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration (extended version). Technical Report TR-2010-10, UBC Computer Science (2010), http://www.cs.ubc.ca/~hutter/papers/10-TR-SMAC.pdf

  18. Bartz-Beielstein, T., Markon, S.: Tuning search algorithms for real-world applications: A regression tree based approach. In: Proc. of CEC 2004, pp. 1111–1118 (2004)

    Google Scholar 

  19. Baz, M., Hunsaker, B., Brooks, P., Gosavi, A.: Automated tuning of optimization software parameters. Technical Report TR2007-7, Univ. of Pittsburgh, Industrial Engineering (2007)

    Google Scholar 

  20. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. JAIR 32, 565–606 (2008)

    MATH  Google Scholar 

  21. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models: Methodology and a case study on combinatorial auctions. Journal of the ACM 56(4), 1–52 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning, 2nd edn. Springer Series in Statistics. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  23. Nell, C., Fawcett, C., Hoos, H.H., Leyton-Brown, K.: HAL: A framework for the automated analysis and design of high-performance algorithms. In: LION-5 (to appear, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hutter, F., Hoos, H.H., Leyton-Brown, K. (2011). Sequential Model-Based Optimization for General Algorithm Configuration. In: Coello, C.A.C. (eds) Learning and Intelligent Optimization. LION 2011. Lecture Notes in Computer Science, vol 6683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25566-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25566-3_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25565-6

  • Online ISBN: 978-3-642-25566-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics