Abstract
Music score analysis is an ongoing issue for musicologists. Discovering frequent musical motifs with variants is needed in order to make critical study of music scores and investigate compositions styles. We introduce a mining algorithm, called CSMA for Constrained String Mining Algorithm, to meet this need considering symbol-based representation of music scores. This algorithm, through motif length and maximal gap constraints, is able to find identical motifs present in a single string or a set of strings. It is embedded into a complete data mining process aiming at finding variants of musical motif. Experiments, carried out on several datasets, showed that CSMA is efficient as string mining algorithm applied on one string or a set of strings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)
Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the Eleventh International Conference on Data Engineering, pp. 3–14. IEEE (1995)
Mooney, C.H., Roddick, J.F.: Sequential pattern mining-approaches and algorithms. ACM Comput. Surv. (CSUR) 45(2), 19 (2013)
Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.C.: Freespan: frequent pattern-projected sequential pattern mining. In: Proceedings of the sixth ACM SIGKDD, pp. 355–359. ACM (2000)
Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Prefixspan: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of the 17th ICDE, pp. 215–224 (2001)
Zaki, M.J.: Spade: an efficient algorithm for mining frequent sequences. Mach. Learn. 42(1), 31–60 (2001)
Zaki, M.J.: Sequence mining in categorical domains: incorporating constraints. In: Proceedings of the ninth ICIKM, pp. 422–429. ACM (2000)
Pei, J., Han, J., Wang, W.: Constraint-based sequential pattern mining: the pattern-growth methods. J. Intell. Inf. Syst. 28(2), 133–160 (2007)
Floratou, A., Tata, S., Patel, J.M.: Efficient and accurate discovery of patterns in sequence data sets. IEEE Trans. Knowl. Data Eng. 23(8), 1154–1168 (2011)
Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. DMKD 1(3), 259–289 (1997)
Fournier-Viger, P., Lin, J.C.W., Kiran, R.U., Koh, Y.S.: A survey of sequential pattern mining. Data Sci. Pattern Recogn. 1(1), 54–77 (2017)
Hsu, J.L., Chen, A.L., Liu, C.C.: Efficient repeating pattern finding in music databases. In: Proceedings of the seventh ICIKM, pp. 281–288. ACM (1998)
Liu, C.C., Hsu, J.L., Chen, A.L.: Efficient theme and non-trivial repeating pattern discovering in music databases. In: Proceedings, 15th International Conference on Data Engineering, pp. 14–21. IEEE (1999)
Fuchs, B.: Co-construction interactive de connaissances, application à l’analyse mélodique. In: IC 2011, 22èmes Journées francophones d’Ingénierie des Connaissances, pp. 705–722 (2012)
Jiménez, A., Molina-Solana, M., Berzal, F., Fajardo, W.: Mining transposed motifs in music. J. Intell. Inf. Syst. 36(1), 99–115 (2011)
Fournier-Viger, P., Lin, J.C.-W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z., Lam, H.T.: The SPMF open-source data mining library version 2. In: Berendt, B., Bringmann, B., Fromont, É., Garriga, G., Miettinen, P., Tatti, N., Tresp, V. (eds.) ECML PKDD 2016. LNCS, vol. 9853, pp. 36–40. Springer, Cham (2016). doi:10.1007/978-3-319-46131-1_8
Fournier-Viger, P., Gomariz, A., Campos, M., Thomas, R.: Fast vertical mining of sequential patterns using co-occurrence information. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS, vol. 8443, pp. 40–52. Springer, Cham (2014). doi:10.1007/978-3-319-06608-0_4
Acknowledgement
The funding for this project was provided by a grant from la région Rhone Alpes.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Benammar, R., Largeron, C., Eglin, V., Pardoen, M. (2017). Discovering Motifs with Variants in Music Databases. In: Adams, N., Tucker, A., Weston, D. (eds) Advances in Intelligent Data Analysis XVI. IDA 2017. Lecture Notes in Computer Science(), vol 10584. Springer, Cham. https://doi.org/10.1007/978-3-319-68765-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-68765-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68764-3
Online ISBN: 978-3-319-68765-0
eBook Packages: Computer ScienceComputer Science (R0)