Nothing Special   »   [go: up one dir, main page]

Skip to main content

Discovering Motifs with Variants in Music Databases

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XVI (IDA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10584))

Included in the following conference series:

Abstract

Music score analysis is an ongoing issue for musicologists. Discovering frequent musical motifs with variants is needed in order to make critical study of music scores and investigate compositions styles. We introduce a mining algorithm, called CSMA for Constrained String Mining Algorithm, to meet this need considering symbol-based representation of music scores. This algorithm, through motif length and maximal gap constraints, is able to find identical motifs present in a single string or a set of strings. It is embedded into a complete data mining process aiming at finding variants of musical motif. Experiments, carried out on several datasets, showed that CSMA is efficient as string mining algorithm applied on one string or a set of strings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the Eleventh International Conference on Data Engineering, pp. 3–14. IEEE (1995)

    Google Scholar 

  3. Mooney, C.H., Roddick, J.F.: Sequential pattern mining-approaches and algorithms. ACM Comput. Surv. (CSUR) 45(2), 19 (2013)

    Article  MATH  Google Scholar 

  4. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.C.: Freespan: frequent pattern-projected sequential pattern mining. In: Proceedings of the sixth ACM SIGKDD, pp. 355–359. ACM (2000)

    Google Scholar 

  5. Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Prefixspan: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of the 17th ICDE, pp. 215–224 (2001)

    Google Scholar 

  6. Zaki, M.J.: Spade: an efficient algorithm for mining frequent sequences. Mach. Learn. 42(1), 31–60 (2001)

    Article  MATH  Google Scholar 

  7. Zaki, M.J.: Sequence mining in categorical domains: incorporating constraints. In: Proceedings of the ninth ICIKM, pp. 422–429. ACM (2000)

    Google Scholar 

  8. Pei, J., Han, J., Wang, W.: Constraint-based sequential pattern mining: the pattern-growth methods. J. Intell. Inf. Syst. 28(2), 133–160 (2007)

    Article  Google Scholar 

  9. Floratou, A., Tata, S., Patel, J.M.: Efficient and accurate discovery of patterns in sequence data sets. IEEE Trans. Knowl. Data Eng. 23(8), 1154–1168 (2011)

    Article  Google Scholar 

  10. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. DMKD 1(3), 259–289 (1997)

    Google Scholar 

  11. Fournier-Viger, P., Lin, J.C.W., Kiran, R.U., Koh, Y.S.: A survey of sequential pattern mining. Data Sci. Pattern Recogn. 1(1), 54–77 (2017)

    Google Scholar 

  12. Hsu, J.L., Chen, A.L., Liu, C.C.: Efficient repeating pattern finding in music databases. In: Proceedings of the seventh ICIKM, pp. 281–288. ACM (1998)

    Google Scholar 

  13. Liu, C.C., Hsu, J.L., Chen, A.L.: Efficient theme and non-trivial repeating pattern discovering in music databases. In: Proceedings, 15th International Conference on Data Engineering, pp. 14–21. IEEE (1999)

    Google Scholar 

  14. Fuchs, B.: Co-construction interactive de connaissances, application à l’analyse mélodique. In: IC 2011, 22èmes Journées francophones d’Ingénierie des Connaissances, pp. 705–722 (2012)

    Google Scholar 

  15. Jiménez, A., Molina-Solana, M., Berzal, F., Fajardo, W.: Mining transposed motifs in music. J. Intell. Inf. Syst. 36(1), 99–115 (2011)

    Article  Google Scholar 

  16. Fournier-Viger, P., Lin, J.C.-W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z., Lam, H.T.: The SPMF open-source data mining library version 2. In: Berendt, B., Bringmann, B., Fromont, É., Garriga, G., Miettinen, P., Tatti, N., Tresp, V. (eds.) ECML PKDD 2016. LNCS, vol. 9853, pp. 36–40. Springer, Cham (2016). doi:10.1007/978-3-319-46131-1_8

    Chapter  Google Scholar 

  17. Fournier-Viger, P., Gomariz, A., Campos, M., Thomas, R.: Fast vertical mining of sequential patterns using co-occurrence information. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS, vol. 8443, pp. 40–52. Springer, Cham (2014). doi:10.1007/978-3-319-06608-0_4

    Chapter  Google Scholar 

Download references

Acknowledgement

The funding for this project was provided by a grant from la région Rhone Alpes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riyadh Benammar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Benammar, R., Largeron, C., Eglin, V., Pardoen, M. (2017). Discovering Motifs with Variants in Music Databases. In: Adams, N., Tucker, A., Weston, D. (eds) Advances in Intelligent Data Analysis XVI. IDA 2017. Lecture Notes in Computer Science(), vol 10584. Springer, Cham. https://doi.org/10.1007/978-3-319-68765-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68765-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68764-3

  • Online ISBN: 978-3-319-68765-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics