Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Sequential pattern mining -- approaches and algorithms

Published: 12 March 2013 Publication History

Abstract

Sequences of events, items, or tokens occurring in an ordered metric space appear often in data and the requirement to detect and analyze frequent subsequences is a common problem. Sequential Pattern Mining arose as a subfield of data mining to focus on this field. This article surveys the approaches and algorithms proposed to date.

References

[1]
Aggarwal, C. C. 2007. Data Streams: Models and Algorithms. Springer, New York.
[2]
Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB). J. B. Bocca, M. Jarke, and C. Zaniolo, Eds., Morgan Kaufmann, 487--499.
[3]
Agrawal, R. and Srikant, R. 1995. Mining sequential patterns. In Proceedings of the 11th International Conference on Data Engineering (ICDE'95). P. S. Yu and A. S. P. Chen, Eds., IEEE Computer Society Press, 3--14.
[4]
Agrawal, R. C., Aggarwal, C. C., and Prasad, V. V. V. 1999. A tree projection algorithm for generation of frequent itemsets. In High Performance Data Mining Workshop. ACM Press.
[5]
Aho, A.1990. Algorithms for Finding Patterns in Strings. Vol. A: Algorithms and Complexity. MIT Press, Cambridge, MA, 255--300.
[6]
Ahonen, H., Heinonen, O., Klemettinen, M., and Verkamo, A. I. 1997. Applying data mining techniques in text analysis. Tech. rep. C-1997-23, Department of Computer Science, University of Helsinki.
[7]
Ahonen, H., Heinonen, O., Klemettinen, M., and Verkamo, A. I. 1998. Applying data mining techniques for descriptive phrase extraction in digital document collections. In Proceedings of the Advances in Digital Libraries Conference. IEEE Computer Society, 2.
[8]
Albert-Lorincz, H. and Boulicaut, J.-F. 2003a. A framework for frequent sequence mining under generalized regular expression constraints. In Proceedings of the 2<sup>nd</sup> International Workshop on Inductive Databases. KDID, J.-F. Boulicaut and S. Dzeroski, Eds., 2--16.
[9]
Albert-Lorincz, H. and Boulicaut, J.-F. 2003b. Mining frequent sequential patterns under regular expressions: A highly adaptive strategy for pushing contraints. In Proceedings of the 3rd SIAM International Conference on Data Mining. D. Barbar'a and C. Kamath, Eds., SIAM.
[10]
Allen, J. F. 1983. Maintaining knowledge about temporal intervals. Comm. ACM 26, 11,832--843.
[11]
Amir, A., Lewenstein, M., and Porat, E. 2000. Faster algorithms for string matching with k mismatches. In Proceedings of the 11<sup>th</sup> Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 794--803.
[12]
Antunes, C. and Oliveira, A. L. 2004. Sequential pattern mining with approximated constraints. In Proceedings of the International Conference on Applied Computing.
[13]
Arslan, A. N. and Egecioglu, O. 1999. An efficient uniform-cost normalized edit distance algorithm. In Proceedings of the 6th Symposium on String Processing and Information Retrieval (SPIRE'99). IEEE Computer Society, 8--15.
[14]
Arslan, A. N. and Egecioglu, O. 2000. Efficient algorithms for normalized edit distance. J. Discr. Algor. 1, 1, 3--20.
[15]
Ayres, J., Flannick, J., Gehrke, J., and Yiu, T. 2002. Sequential pattern mining using a bitmap representation. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 429--435.
[16]
Batu, T., Ergün, F., Kilian, J., Magen, A., Raskhodnikova, S., Rubinfeld, R., and Sami, R. 2003. A sublinear algorithm for weakly approximating edit distance. In Proceedings of the 35th ACM Symposium on Theory of Computing. ACM Press, 316--324.
[17]
Bayardo, R. J. and Agrawal, R. 1999. Mining the most interesting rules. In Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining. S. Chaudhuri and D. Madigan, Eds., ACM Press, 145--154.
[18]
Bentley, J. L. and Sedgewick, R. 1997. Fast algorithms for sorting and searching strings. In Proceedings of the 8th Annual ACM/SIAM Symposium on Discrete Algorithms. SIAM, 360--369.
[19]
Breslauer, D. and Gąsieniec, L. 1995. Efficient string matching on coded texts. In Proceedings of the 6th Annual Symposium on Combinatorial Pattern Matching. Z. Galil and E. Ukkonen, Eds., Springer, 27--40.
[20]
Bunke, H. and Csirik, J. 1992. Edit distance of run-length coded strings. In Proceedings of the ACM/SIGAPP Symposium on Applied Computing. ACM Press, 137--143.
[21]
Cai, Y. D., Clutter, D., Pape, G., Han, J., Welge, M., and Auvil, L. 2004. Maids: Mining alarming incidents from data streams. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM Press, 919--920.
[22]
Casas-Garriga, G. 2005. Summarizing sequential data with closed partial orders. In Proceedings of the 5th SIAM International Conference on Data Mining. H. Kargupta, J. Srivastava, and A. Chandrika Kamath, Eds., Vol. 119, 380--391.
[23]
Ceglar, A. and Roddick, J. F. 2006. Association mining. ACM Comput. Surv. 38, 2.
[24]
Ceglar, A., Roddick, J. F., and Calder, P. 2003. Guiding Knowledge Discovery Through Interactive Data Mining. Idea Group Publishers, Hershey, PA, 45--87.
[25]
Chakrabarti, S., Sarawagi, S., and Dom, B. 1998. Mining surprising patterns using temporal description length. In Proceedings of the 24th International Conference on Very Large Data Bases, (VLDB'98). A. Gupta, O. Shmueli, and J. Widom, Eds. Morgan Kaufmann, 606--617.
[26]
Chan, S., Kao, B., Yip, C. L., and Tang, M. 2002. Mining emerging substrings. Tech. rep. TR-2002-11, HKU CSIS.
[27]
Cheng, H., Yan, X., and Han, J. 2004. Incspan: Incremental mining of sequential patterns in large database. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '04). ACM Press, 527--532.
[28]
Chiu, D.-Y., Wu, Y.-H., and Chen, A. L. P. 2004. An efficient algorithm for mining frequent sequences by a new strategy without support counting. In Proceedings of the 20th International Conference on Data Engineering (ICDE'04). IEEE Computer Society, 375--386.
[29]
Cole, R. and Hariharan, R. 1998. Approximate string matching: A simpler faster algorithm. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 463--472.
[30]
Cong, S., Han, J., and Padua, D. A. 2005. Parallel mining of closed sequential patterns. In Proceedings of the 11<sup>th</sup> ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. R. Grossman, R. Bayardo, and K. P. Bennett, Eds., ACM, 562--567.
[31]
Cormode, G. and Muthukrishnan, S. 2002. The string edit distance matching problem with moves. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 667--676.
[32]
Demiriz, A. and Zaki, M. J. 2002. webSPADE: A parallel sequence mining algorithm to analyze the web log data. In Proceedings of the 2<sup>nd</sup> IEEE International Conference on Data Mining.
[33]
El-Sayed, M., Ruiz, C., and Rundensteiner, E. A. 2004. FS-miner: Efficient and incremental mining of frequent sequence patterns in web logs. In Proceedings of the 6<sup>th</sup> ACM International Workshop on Web Information and Data Management (WIDM'04). A. H. F. Laender, D. Lee, and M. Ronthaler, Eds., ACM, 128--135.
[34]
Fiot, C., Laurent, A., and Teisseire, M. 2007. From crispness to fuzziness: Three algorithms for soft sequential pattern mining. IEEE Trans. Fuzzy Syst. 15, 6, 1263--1277.
[35]
Fu, Y. and Han, J. 1995. Meta-Rule-Guided mining of association rules in relational databases. In Proceedings of the 1<sup>st</sup> International Workshop on Integration of Knowledge Discovery with Deductive and Object-Oriented Databases (KDOOD'95). 39--46.
[36]
Gaber, M. M., Zaslavsky, A., and Krishnaswamy, S. 2005. Mining data streams: A review. SIGMOD Rec. 34, 2, 18--26.
[37]
Garofalakis, M. N., Rastogi, R., and Shim, K. 1999. SPIRIT: Sequential pattern mining with regular expression constraints. In Proceedings of the 25th International Conference on Very Large Databases (VLDB'99). 223--234.
[38]
Giannella, C., Han, J., Pei, J., Yan, X., and Yu, P. S. 2003. Mining frequent patterns in data streams at multiple time granularities. In Next Generation Data Mining. H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha, Eds., 191--212.
[39]
Guralnik, V. and Karypis, G. 2004. Parallel tree-projection-based sequence mining algorithms. Parallel Comput. 30, 4, 443--472.
[40]
Guralnik, V., Wijesekera, D., and Srivastava, J. 1998. Pattern directed mining of sequence data. In Proceedings of the 4<sup>th</sup> International Conference on Knowledge Discovery and Data Mining (KDD '98). R. Agrawal, P. E. Stolorz, and G. Piatetsky-Shapiro, Eds., AAAI Press, 51--57.
[41]
Hall, P. A. V. and Dowling, G. R. 1980. Approximate string matching. ACM Comput. Surv. 12, 4, 381--402.
[42]
Han, J., Cheng, H., Xin, D., and Yan, X. 2007. Frequent pattern mining: Current status and future directions. Data Mining Knowl. Discov. 15, 1, 55--86.
[43]
Han, J., Koperski, K., and Stefanovic, N. 1997. GeoMiner: A system prototype for spatial data mining. In Proceedings of the ACM SIGMOD International Conference on the Management of Data (SIGMOD '97). J. Peckham, Ed., ACM Press, 553--556.
[44]
Han, J. and Pei, J. 2000. Mining frequent patterns by pattern growth: Methodology and implications. SIGKDD Explor. Newslett. 2, 2, 14--20.
[45]
Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., and Hsu, M.-C. 2000a. Freespan: Frequent pattern-projected sequential pattern mining. In Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 355--359.
[46]
Han, J., Pei, J., and Yin, Y. 2000b. Mining frequent patterns without candidate generation. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD '00). ACM, 1--12.
[47]
Hingston, P. 2002. Using finite state automata for sequence mining. In Proceedings of the 25<sup>th</sup> Australasian Conference on Computer Science (ACSC'02). Australian Computer Society, Inc., 105--110.
[48]
Hong, T. P., Lin, K. Y., and Wang, S. L. 2001. Mining fuzzy sequential patterns from multiple-item transactions. In Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference. Vol. 3., IEEE, 1317--1321.
[49]
Hoppner, F. 2001. Discovery of temporal patterns. Learning rules about the qualitative behaviour of time series. In Proceedings of the 5<sup>th</sup> European Conference on Principles of Data Mining and Knowledge Discovery (PKDD'01). 192-203.
[50]
Hoppner, F. and Klawonn, F. 2002. Finding informative rules in interval sequences. Intell. Data Anal. 6, 6, 237--255.
[51]
Hsu, C. M., Chen, C. Y., Liu, B. J., Huang, C. C., Laio, M. H., Lin, C. C., and Wu, T. L. 2007. Identification of hot regions in protein-protein interactions by sequential pattern mining. BMC Bioinf. 8, 5, 8.
[52]
Hu, Y. C., Chen, R. S., Tzeng, G. H., and Shieh, J. H. 2003. A fuzzy data mining algorithm for finding sequential patterns. Int. J. Uncert., Fuzziness Knowl. Based Syst. 11, 2, 173--194.
[53]
Hu, Y. C., Tzeng, G. H., and Chen, C. M. 2004. Deriving two-stage learning sequences from knowledge in fuzzy sequential pattern mining. Inf. Sci. 159, 1-2, 69--86.
[54]
Huang, K.-Y., Chang, C.-H., and Lin, K.-Z. 2004. PROWL: An efficient frequent continuity mining algorithm on event sequences. In Proceedings of the 6<sup>th</sup> International Conference on Data Warehousing and Knowledge Discovery (DaWaK'04). Y. Kambayashi and W. Wöß, Eds., Lecture Notes in Computer Science, vol. 3181, Springer, 351--360.
[55]
Huang, K.-Y., Chang, C.-H., and Lin, K.-Z. 2005. ClosedPROWL: Efficient mining of closed frequent continuities by projected window list technology. In Proceedigns of the SIAM International Conference on Data Mining.
[56]
Hyyro, H. 2003. A bit-vector algorithm for computing levenshtein and damerau edit distances. Nordic J. Comput. 10, 1, 29--39.
[57]
Joshi, M. V., Karypis, G., and Kumar, V. 1999. Universal formulation of sequential patterns. Tech. rep. 99-21, Department of Computer Science, University of Minnesota.
[58]
Kam, P.-S. and Fu, A. W.-C. 2000. Discovering temporal patterns for interval-based events. In Proceedings of the 2nd International Conference on Data Warehousing and Knowledge Discovery (DaWaK '00). Y. Kambayashi, M. K. Mohania, and A. M. Tjoa, Eds., Lecture Notes in Computer Science, vol. 1874., Springer, 317--326.
[59]
Kum, H.-C., Chang, J. H., and Wang, W. 2007a. Benchmarking the effectiveness of sequential pattern mining methods. Data Knowl. Engin. 60, 1, 30--50.
[60]
Kum, H.-C., Chang, J. H., and Wang, W. 2007B. Intelligent sequential mining via alignment: Optimization techniques for very large databases. In Proceedings of the 11th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. (PAKDD'07). Springer, 587--597.
[61]
Kum, H.-C., Pei, J., Wang, W., and Duncan, D. 2002. ApproxMAP: Approximate mining of consensus sequential patterns. In Mining Sequential Patterns from Large Data Sets, W. Wang and J. Yang, Eds. Vol. 28., Springer.
[62]
Landau, G. M., Myers, E. W., and Schmidt, J. P. 1998. Incremental string comparison. SIAM J. Comput. 27, 2, 557--582.
[63]
Laur, P.-A., Symphor, J.-E., Nock, R., and Poncelet, P. 2005. Mining sequential patterns on data streams: A near-optimal statistical approach. In Proceedigns of the 2<sup>nd</sup> International Workshop on Knowledge Discovery from Data Streams.
[64]
Lin, J., Keogh, E., Lonardi, S., and Chiu, B. 2003. A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. ACM Press, 2--11.
[65]
Luo, C. and Chung, S. M. 2004. A scalable algorithm for mining maximal frequent sequences using sampling. In Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI '04). IEEE Computer Society, 156--165.
[66]
Mabroukeh, N. R. and Ezeife, C. I. 2010. A taxonomy of sequential pattern mining algorithms. ACM Comput. Surv. 43, 1, 3.
[67]
Mannila, H. and Toivonen, H. 1996. Discovering generalized episodes using minimal occurrences. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD '96). AAAI Press, 146--151.
[68]
Mannila, H., Toivonen, H., and Verkamo, A. I. 1995. Discovering frequent episodes in sequences. In Proceedings of the 1st International Conference on Knowledge Discovery and Data Mining (KDD '95). U. M. Fayyad and R. Uthurusamy, Eds., AAAI Press, 210--215.
[69]
Mannila, H., Toivonen, H., and Verkamo, A. I. 1997. Discovery of frequent episodes in event sequences. Data Min. Knowl. Discov. 1, 3, 259--289.
[70]
Marascu, A. and Masseglia, F. 2005. Mining sequential patterns from temporal streaming data. In Proceedings of the 1<sup>st</sup> ECML/PKDD Workshop on Mining Spatio-Temporal Data (MSTD'05), held in conjunction with the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'05).
[71]
Masseglia, F., Cathala, F., and Poncelet, P. 1998. The PSP approach for mining sequential patterns. In Proceedings of the 2nd European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD'98). Lecture Notes in Artificial Intelligence, vol. 1510., Springer, 176--184.
[72]
Masseglia, F., Poncelet, P., and Teisseire, M. 2000. Incremental mining of sequential patterns in large databases. Tech. rep., LIRMM.
[73]
Mooney, C. H. and Roddick, J. F. 2006. Marking time in sequence mining. In Proceedings of the Australasian Conference on Data Mining and Analystics (AusDM '06). P. Christen, P. Kennedy, J. Li, S. Simoff, and G. Williams, Eds., Vol. 61.
[74]
Navarro, G. 2001. A guided tour to approximate string matching. ACM Comput. Surv. 33, 1, 31--88.
[75]
Ng, R. T., Lakshmanan, L. V. S., Han, J., and Pang, A. 1998. Exploratory mining and pruning optimizations of constrained associations rules. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD'98). ACM, 13--24.
[76]
Nguyen, S. N., Sun, X., and Orlowska, M. E. 2005. Improvements of incspan: Incremental mining of sequential patterns in large database. In Proceedings of the 9th Pacific-Asia Conference (PAKDD'05). T. B. Ho, D. Cheung, and H. Liu, Eds., Vol. 3518., Springer, 442--451.
[77]
Oommen, B. J. and Loke, R. K. S. 1995. Pattern recognition of strings with substitutions, insertions, deletions and generalized transpositions. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. Vol. 2. 1154--1159.
[78]
Oommen, B. J. and Zhang, K. 1996. The Normalized String Editing problem revisited. IEEE Trans. Pattern Anal. Mach. Intell. 18, 6, 669--672.
[79]
Orlando, S., Perego, R., and Silvestri, C. 2004. A New Algorithm for gap constrained sequence mining. In Proceedings of the ACM Symposium on Applied Computing (SAC). ACM Press, 540--547.
[80]
Ouh, J. Z., Wu, P. H., and Chen, M. S. 2001. Experimental results on a constrained based sequential pattern mining for telecommunication alarm data. In Proceedings of the 2nd International Conference on Web Information Systems Engineering (WISE'01). IEEE Computer Society, 186--193.
[81]
Padmanabhan, B. and Tuzhilin, A. 1996. Pattern discovery in temporal databases: A temporal logic approach. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. E. Simoudis, J. Han, and U. Fayyad, Eds., AAAI Press, 351--354.
[82]
Pan, F., Cong, G., Tung, A. K. H., Yang, J., and Zaki, M. J. 2003. Carpenter: finding closed patterns in long biological datasets. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '03). ACM Press, 637--642.
[83]
Parthasarathy, S., Zaki, M. J., Ogihara, M., and Dwarkadas, S. 1999. Incremental and interactive sequence mining. In Proceedings of the ACM International Conference on Information and Knowledge Management (CIKM). ACM, 251--258.
[84]
Pei, J., Han, J., and Lakshmanan, L. V. S. 2001a. Mining frequent itemsets with convertible constraints. In Proceedings of the 17th International Conference on Data Engineering. IEEE Computer Society, 433--442.
[85]
Pei, J., Han, J., and Mao, R. 2000a. CLOSET: An efficient algorithm for mining frequent closed itemsets. In Proceedings of the ACM SIGMOD International Workshop on Data Mining. ACM Press, 21--30.
[86]
Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., and Hsu, M.-C. 2001b. PrefixSpan mining sequential patterns efficiently by prefix projected pattern growth. In Proceedings of the International Conference of Data Engineering (ICDE'01). 215--226.
[87]
Pei, J., Han, J., Mortazavi-Asl, B., and Zhu, H. 2000b. Mining access patterns efficiently from web logs. In Proceedings of the 4th Pacific-Asia Conference (PAKDD'00). Lecture Notes in Computer Science, vol. 1805., Springer, 396--407.
[88]
Pei, J., Han, J., and Wang, W. 2002. Mining sequential patterns with constraints in large databases. In Proceedings of the 11th International Conference on Information and Knowledge Management. ACM Press, 18--25.
[89]
Pei, J., Han, J., and Wang, W. 2007. Constraint-Based sequential pattern mining: The pattern-growth methods. J. Intell. Inf. Syst. 28, 2, 133--160.
[90]
Pei, J., Liu, J., Wang, H., Wang, K., Yu, P. S., and Wang, J. 2005. Efficiently mining frequent closed partial orders. In Proceedings of the 5th IEEE International Conference on Data Mining. IEEE, 753--756.
[91]
Pei, J., Wang, H., Liu, J., Wang, K., Wang, J., and Yu, P. S. 2006. Discovering frequent closed partial orders from strings. IEEE Trans. Knowl. Data Engin. 18, 11, 1467--1481.
[92]
Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., and Dayal, U. 2001. Multi-Dimensional sequential pattern mining. In Proceedings of the 10th International Conference on Information and Knowledge Management. ACM Press, 81--88.
[93]
Rajman, M. and Besanç, on, R. 1998. Text mining -- knowledge extraction from unstructured textual data. In Proceedings of the 6th Conference of International Federation of Classification Societies (IFCS'98).
[94]
Sankoff, D. and Kruskal, J. B. 1999. Time Warps, String Edits, and Macromolecules/The Theory and Practice of Sequence Comparison. David Hume Series., Center for the Study of Language and Information, Stanford, CA.
[95]
Savary, L. and Zeitouni, K. 2005. Indexed bit map (ibm) for mining frequent sequences. In Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'05). A. Jorge, L. Torgo, P. Brazdil, R. Camacho, and J. A. Gama, Eds., Lecture Notes in Computer Science, vol. 3721., Springer, 659--666.
[96]
Seno, M. and Karypis, G. 2001. LPMiner: An algorithm for finding frequent itemsets using length-decreasing support constraint. In Proceedigns of the 1st IEEE Conference on Data Mining.
[97]
Seno, M. and Karypis, G. 2002. SLPMiner: An algorithm for finding frequent sequential patterns using length-decreasing support. Tech. rep. 02-023, University of Minnesota.
[98]
Seno, M. and Karypis, G. 2005. Finding frequent patterns using length-decreasing support constraints. IEEE Trans. Knowl. Data Engin. 10, 3, 197--228.
[99]
Srikant, R. and Agrawal, R. 1996. Mining sequential patterns: Generalizations and performance improvements. In Proceedings of the 5th International Conference on Extending Database Technology (EDBT'96), P. M. G. Apers, M. Bouzeghoub, and G. Gardarin, Eds., Lecture Notes in Computer Science, vol. 1057. Springer, 3--17.
[100]
Srivastava, J., Cooley, R., Deshpande, M., and Tan, P.-N. 2000. Web usage mining: Discovery and applications of usage patterns from web data. SIGKDD Explor. 1, 2, 12--23.
[101]
Sun, X., Orlowska, M. E., and Zhou, X. 2003. Finding event-oriented patterns in long temporal sequences. In Proceedings of the 7th Pacific-Asia Conference (PAKDD'03), K.-Y. Whang, J. J. and, K. S. and, and J. Srivastava, Eds., Lecture Notes in Computer Science, vol. 2637., Springer, 15--26.
[102]
Teng, W.-G., Chen, M.-S., and Yu, P. S. 2003. A regression-based temporal pattern mining scheme for data streams. In Proceedings of the 29th International Conference on Very Large Data Bases (VLBD '03), J. C. Freytag, P. C. Lockemann, S. Abiteboul, M. J. Carey, P. G. Selinger, and A. Heuer, Eds., Morgan Kaufmann, 93--104.
[103]
Tichy, W. F. 1984. The string-to-string correction problem with block moves. ACM Trans. Comput. Syst. 2, 4, 309--321.
[104]
Toivonen, H. 1996. Discovery of frequent patterns in large data collections. Tech. rep. a-1996-5, Department of Computer Science, University of Helsinki.
[105]
Tumasonis, R. and Dzemyda, G. 2004. The probabilistic algorithm for mining frequent sequences. In Proceedings of the Conference on Advances in Databases and Information Systems (ADBIS).
[106]
Wagner, R. A. and Fischer, M. J. 1974. The string-to-string correction problem. J. ACM 21, 1, 168--173.
[107]
Wang, J. and Han, J. 2004. Bide: Efficient mining of frequent closed sequences. In Proceedings of the International Conference on Data Engineering (ICDE'04).
[108]
Wang, J., Han, J., and Pei, J. 2003. CLOSET&plus;: Searching for the best strategies for mining frequent closed itemsets. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. L. Getoor, T. E. Senator, P. Domingos, and C. Faloutsos, Eds., ACM Press, 236--245.
[109]
Wang, K. 1997. Discovering patterns from large and dynamic sequential data. J. Intell. Inf. Syst. 9, 1, 33--56.
[110]
Wang, K. and Tan, J. 1996. Incremental discovery of sequential patterns. In Proceedings of the ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery.
[111]
Wang, K., Xu, Y., and Yu, J. X. 2004. Scalable sequential pattern mining for biological sequences. In Proceedings of the 13th ACM International Conference on Information and Knowledge Management (CIKM'04). ACM, 178--187.
[112]
Wu, P. H., Peng, W. C., and Chen, M. S. 2001. Mining sequential alarm patterns in a telecommunication database. In Databases in Telecommunications II, W. Jonker, Ed., Lecture Notes in Computer Science, vol. 2209., Springer, 37--51.
[113]
Yan, X., Han, J., and Afshar, R. 2003. CloSpan: Mining closed sequential patterns in large datasets. In Proceedings of the International Conference on Data Mining (SDM'03).
[114]
Yang, J., Wang, W., Yu, P. S., and Han, J. 2002. Mining long sequential patterns in a noisy environment. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD'02).
[115]
Yang, Z. and Kitsuregawa, M. 2005. LAPIN-SPAM: An improved algorithm for mining sequential pattern. In Proceedings of the 21st International Conference on Data Engineering Workshops (ICDEW'05). IEEE Computer Society, 1222.
[116]
Yang, Z., Wang, Y., and Kitsuregawa, M. 2005. LAPIN: Effective sequential pattern mining algorithms by last position induction. In Proceedings of the 21st International Conference on Data Engineering (ICDE‘05).
[117]
Yu, C.-C. and Chen, Y.-L. 2005. Mining sequential patterns from multidimensional sequence data. IEEE Trans. Knowl. Data Engin. 17, 1, 136--140.
[118]
Zaki, M., Lesh, N., and Ogihara, M. 1998. Planmine: Sequence mining for plan failures. In Proceedings of the 4<sup>th</sup> International Conference on Knowledge Discovery and Data Mining (KDD'98), R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro, Eds., ACM Press, 369--373.
[119]
Zaki, M. J. 1998. Efficient enumeration of frequent sequences. In Proceedings of the 7th International Conference on Information and Knowledge Management. ACM Press, 68--75.
[120]
Zaki, M. J. 2000. Sequence mining in categorical domains: Incorporating constraints. In Proceedings of the 9th International Conference on Information and Knowledge Management (CIKM '00), A. Agah, J. Callan, and E. Rundensteiner, Eds., ACM Press, 422--429.
[121]
Zaki, M. J. 2001a. Parallel sequence mining on shared-memory machines. J. Parallel Distrib. Comput. 61, 3, 401--426.
[122]
Zaki, M. J. 2001b. SPADE: An efficient algorithm for mining frequent sequences. Mach. Learn. 42, 1/2, 31--60.
[123]
Zaki, M. J. and Hsiao, C.-J. 2002. CHARM: An efficient algorithm for closed itemset mining. In Proceedings of the 2nd SIAM International Conference on Data Mining (SDM'02). R. L. Grossman, J. Han, V. Kumar, H. Mannila, and R. Motwani, Eds., SIAM, 457--473.
[124]
Zhang, M., Kao, B., Cheung, D. W.-L., and Yip, C. L. 2002. Efficient algorithms for incremental update of frequent sequences. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining. 186--197.
[125]
Zhang, M., Kao, B., Yip, C., and Cheung, D. 2001. A GSP-based efficient algorithm for mining frequent sequences. In Proceedings of the International Conference on Artificial Intelligence (ICAI'01).
[126]
Zhao, Q. and Bhowmick, S. S. 2003. Sequential pattern mining: A survey. Tech. rep., Nanyang Technological University, Singapore.
[127]
Zheng, Q., Xu, K., Ma, S., and Lv, W. 2002. The algorithms of updating sequential patterns. In Proceedings of the 5th International Workshop on High Performance Data Mining,in conjunction with the 2nd SIAM Conference on Data Mining.

Cited By

View all
  • (2024)TaSPM: Targeted Sequential Pattern MiningACM Transactions on Knowledge Discovery from Data10.1145/363982718:5(1-18)Online publication date: 28-Feb-2024
  • (2024)A Fair Clustering Approach to Self-Regulated Learning Behaviors in a Virtual Learning EnvironmentProceedings of the 14th Learning Analytics and Knowledge Conference10.1145/3636555.3636863(771-778)Online publication date: 18-Mar-2024
  • (2024)Guided Exploration of Industrial Sensor DataComputer Graphics Forum10.1111/cgf.1500343:1Online publication date: 29-Jan-2024
  • Show More Cited By

Index Terms

  1. Sequential pattern mining -- approaches and algorithms

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Computing Surveys
    ACM Computing Surveys  Volume 45, Issue 2
    February 2013
    417 pages
    ISSN:0360-0300
    EISSN:1557-7341
    DOI:10.1145/2431211
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 12 March 2013
    Accepted: 01 September 2011
    Revised: 01 September 2011
    Received: 01 September 2009
    Published in CSUR Volume 45, Issue 2

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tag

    1. Sequential pattern mining

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)107
    • Downloads (Last 6 weeks)9
    Reflects downloads up to 16 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)TaSPM: Targeted Sequential Pattern MiningACM Transactions on Knowledge Discovery from Data10.1145/363982718:5(1-18)Online publication date: 28-Feb-2024
    • (2024)A Fair Clustering Approach to Self-Regulated Learning Behaviors in a Virtual Learning EnvironmentProceedings of the 14th Learning Analytics and Knowledge Conference10.1145/3636555.3636863(771-778)Online publication date: 18-Mar-2024
    • (2024)Guided Exploration of Industrial Sensor DataComputer Graphics Forum10.1111/cgf.1500343:1Online publication date: 29-Jan-2024
    • (2024)RNP-Miner: Repetitive Nonoverlapping Sequential Pattern MiningIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2023.333430036:9(4874-4889)Online publication date: 1-Sep-2024
    • (2024)A Pattern Mining-Based False Data Injection Attack Detector for Industrial Cyber-Physical SystemsIEEE Transactions on Industrial Informatics10.1109/TII.2023.329713920:2(2969-2978)Online publication date: Feb-2024
    • (2024)Unlocking the secrets of daily app switching: a comprehensive guide to mastering both intra-app and inter-app search strategiesLibrary Hi Tech10.1108/LHT-03-2024-0136Online publication date: 9-Jul-2024
    • (2024)Application of simulation and machine learning in supply chain management: A synthesis of the literature using the Sim-ML literature classification frameworkComputers & Industrial Engineering10.1016/j.cie.2024.110649198(110649)Online publication date: Dec-2024
    • (2024)Development and classification of autonomous vehicle’s ambiguous driving scenarioAccident Analysis & Prevention10.1016/j.aap.2024.107501200(107501)Online publication date: Jun-2024
    • (2024)Sequential pattern mining algorithms and their applications: a technical reviewInternational Journal of Data Science and Analytics10.1007/s41060-024-00659-xOnline publication date: 5-Oct-2024
    • (2024)AirPollutionViz: visual analytics for understanding the spatio-temporal evolution of air pollutionJournal of Visualization10.1007/s12650-024-00958-227:2(215-233)Online publication date: 1-Apr-2024
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media