Abstract
The database landscape has significantly evolved over the last decade as cloud computing enables to run distributed databases on virtually unlimited cloud resources. Hence, the already non-trivial task of selecting and deploying a distributed database system becomes more challenging. Database evaluation frameworks aim at easing this task by guiding the database selection and deployment decision. The evaluation of databases has evolved as well by moving the evaluation focus from performance to distribution aspects such as scalability and elasticity. This paper presents a cloud-centric analysis of distributed database evaluation frameworks based on evaluation tiers and framework requirements. It analysis eight well adopted evaluation frameworks. The results point out that the evaluation tiers performance, scalability, elasticity and consistency are well supported, in contrast to resource selection and availability. Further, the analysed frameworks do not support cloud-centric requirements but support classic evaluation requirements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, D., Abbadi, A., Das, S., Elmore, A.J.: Database scalability, elasticity, and autonomy in the cloud. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011. LNCS, vol. 6587, pp. 2–15. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20149-3_2
Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: Linkbench: a database benchmark based on the facebook social graph. In: SIGMOD (2013)
Barahmand, S., Ghandeharizadeh, S.: Bg: A benchmark to evaluate interactive social networking actions. In: CIDR (2013)
Baur, D., Seybold, D., Griesinger, F., Tsitsipas, A., Hauser, C.B., Domaschka, J.: Cloud orchestration features: Are tools fit for purpose? In: UCC (2015)
Bermbach, D., Kuhlenkamp, J.: Consistency in distributed storage systems. In: Gramoli, V., Guerraoui, R. (eds.) NETYS 2013. LNCS, vol. 7853, pp. 175–189. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40148-0_13
Bermbach, D., Kuhlenkamp, J., Dey, A., Sakr, S., Nambiar, R.: Towards an extensible middleware for database benchmarking. In: Nambiar, R., Poess, M. (eds.) Performance Characterization and Benchmarking: Traditional to Big Data. LNCS, pp. 82–96. Springer, Cham (2015). doi:10.1007/978-3-319-15350-6_6
Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving systems with ycsb. In: SoCC (2010)
Dey, A., Fekete, A., Nambiar, R., Rohm, U.: Ycsb+t: Benchmarking web-scale transactional databases. In: ICDEW (2014)
Difallah, D.E., Pavlo, A., Curino, C., Cudre-Mauroux, P.: Oltp-bench: An extensible testbed for benchmarking relational databases. VLDB 7, 277–288 (2013)
Dory, T., Mejias, B., Roy, P., Tran, N.L.: Measuring elasticity for cloud databases. In: Cloud Computing (2011)
Friedrich, S., Wingerath, W., Gessert, F., Ritter, N., Pldereder, E., Grunske, L., Schneider, E., Ull, D.: Nosql oltp benchmarking: A survey. In: GI-Jahrestagung (2014)
Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen, H.A.: Bigbench: towards an industry standard benchmark for big data analytics. In: SIGMOD (2013)
Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM Sigact News 33, 51–59 (2002)
Gray, J.: Benchmark Handbook: For Database and Transaction Processing Systems. Morgan Kaufmann Publishers Inc, San Francisco (1993)
Grolinger, K., Higashino, W.A., Tiwari, A., Capretz, M.A.: Data management in cloud environments: Nosql and newsql data stores. JoCCASA 2, 22 (2013)
Khazaei, H., Fokaefs, M., Zareian, S., Beigi-Mohammadi, N., Ramprasad, B., Shtern, M., Gaikwad, P., Litoiu, M.: How do i choose the right NoSQL solution? a comprehensive theoretical and experimental survey. BDIA 2, 1 (2016)
Mell, P., Grance, T.: The nist definition of cloud computing. Technical report, National Institute of Standards & Technology (2011)
Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., Gibson, G., Fuchs, A., Rinaldi, B.: Ycsb++: benchmarking and performance debugging advanced features in scalable table stores. In: SoCC (2011)
Reniers, V., Van Landuyt, D., Rafique, A., Joosen, W.: On the state of nosql benchmarks. In: ICPE (2017)
Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence. Pearson Education, London (2012)
Seybold, D., Domaschka, J.: A cloud-centric survey on distributed database evaluation. Technical report. Ulm University (2017)
Seybold, D., Wagner, N., Erb, B., Domaschka, J.: Is elasticity of scalable databases a myth? In: IEEE Big Data (2016)
Acknowledgements
The research leading to these results has received funding from the EC’s Framework Programme HORIZON 2020 under grant agreement number 644690 (CloudSocket) and 731664 (MELODIC). We thank Moritz Keppler and the Daimler TSS for their valuable and constructive discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Seybold, D., Domaschka, J. (2017). Is Distributed Database Evaluation Cloud-Ready?. In: Kirikova, M., et al. New Trends in Databases and Information Systems. ADBIS 2017. Communications in Computer and Information Science, vol 767. Springer, Cham. https://doi.org/10.1007/978-3-319-67162-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-67162-8_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67161-1
Online ISBN: 978-3-319-67162-8
eBook Packages: Computer ScienceComputer Science (R0)