Nothing Special   »   [go: up one dir, main page]

Skip to main content

Is Distributed Database Evaluation Cloud-Ready?

  • Conference paper
  • First Online:
New Trends in Databases and Information Systems (ADBIS 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 767))

Included in the following conference series:

Abstract

The database landscape has significantly evolved over the last decade as cloud computing enables to run distributed databases on virtually unlimited cloud resources. Hence, the already non-trivial task of selecting and deploying a distributed database system becomes more challenging. Database evaluation frameworks aim at easing this task by guiding the database selection and deployment decision. The evaluation of databases has evolved as well by moving the evaluation focus from performance to distribution aspects such as scalability and elasticity. This paper presents a cloud-centric analysis of distributed database evaluation frameworks based on evaluation tiers and framework requirements. It analysis eight well adopted evaluation frameworks. The results point out that the evaluation tiers performance, scalability, elasticity and consistency are well supported, in contrast to resource selection and availability. Further, the analysed frameworks do not support cloud-centric requirements but support classic evaluation requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.tpc.org/tpce/.

  2. 2.

    https://aws.amazon.com/de/ec2/instance-types/.

  3. 3.

    https://wiki.openstack.org/wiki/Magnum.

References

  1. Agrawal, D., Abbadi, A., Das, S., Elmore, A.J.: Database scalability, elasticity, and autonomy in the cloud. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011. LNCS, vol. 6587, pp. 2–15. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20149-3_2

    Chapter  Google Scholar 

  2. Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: Linkbench: a database benchmark based on the facebook social graph. In: SIGMOD (2013)

    Google Scholar 

  3. Barahmand, S., Ghandeharizadeh, S.: Bg: A benchmark to evaluate interactive social networking actions. In: CIDR (2013)

    Google Scholar 

  4. Baur, D., Seybold, D., Griesinger, F., Tsitsipas, A., Hauser, C.B., Domaschka, J.: Cloud orchestration features: Are tools fit for purpose? In: UCC (2015)

    Google Scholar 

  5. Bermbach, D., Kuhlenkamp, J.: Consistency in distributed storage systems. In: Gramoli, V., Guerraoui, R. (eds.) NETYS 2013. LNCS, vol. 7853, pp. 175–189. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40148-0_13

    Chapter  Google Scholar 

  6. Bermbach, D., Kuhlenkamp, J., Dey, A., Sakr, S., Nambiar, R.: Towards an extensible middleware for database benchmarking. In: Nambiar, R., Poess, M. (eds.) Performance Characterization and Benchmarking: Traditional to Big Data. LNCS, pp. 82–96. Springer, Cham (2015). doi:10.1007/978-3-319-15350-6_6

    Chapter  Google Scholar 

  7. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving systems with ycsb. In: SoCC (2010)

    Google Scholar 

  8. Dey, A., Fekete, A., Nambiar, R., Rohm, U.: Ycsb+t: Benchmarking web-scale transactional databases. In: ICDEW (2014)

    Google Scholar 

  9. Difallah, D.E., Pavlo, A., Curino, C., Cudre-Mauroux, P.: Oltp-bench: An extensible testbed for benchmarking relational databases. VLDB 7, 277–288 (2013)

    Google Scholar 

  10. Dory, T., Mejias, B., Roy, P., Tran, N.L.: Measuring elasticity for cloud databases. In: Cloud Computing (2011)

    Google Scholar 

  11. Friedrich, S., Wingerath, W., Gessert, F., Ritter, N., Pldereder, E., Grunske, L., Schneider, E., Ull, D.: Nosql oltp benchmarking: A survey. In: GI-Jahrestagung (2014)

    Google Scholar 

  12. Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen, H.A.: Bigbench: towards an industry standard benchmark for big data analytics. In: SIGMOD (2013)

    Google Scholar 

  13. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM Sigact News 33, 51–59 (2002)

    Article  Google Scholar 

  14. Gray, J.: Benchmark Handbook: For Database and Transaction Processing Systems. Morgan Kaufmann Publishers Inc, San Francisco (1993)

    MATH  Google Scholar 

  15. Grolinger, K., Higashino, W.A., Tiwari, A., Capretz, M.A.: Data management in cloud environments: Nosql and newsql data stores. JoCCASA 2, 22 (2013)

    Google Scholar 

  16. Khazaei, H., Fokaefs, M., Zareian, S., Beigi-Mohammadi, N., Ramprasad, B., Shtern, M., Gaikwad, P., Litoiu, M.: How do i choose the right NoSQL solution? a comprehensive theoretical and experimental survey. BDIA 2, 1 (2016)

    Google Scholar 

  17. Mell, P., Grance, T.: The nist definition of cloud computing. Technical report, National Institute of Standards & Technology (2011)

    Google Scholar 

  18. Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., Gibson, G., Fuchs, A., Rinaldi, B.: Ycsb++: benchmarking and performance debugging advanced features in scalable table stores. In: SoCC (2011)

    Google Scholar 

  19. Reniers, V., Van Landuyt, D., Rafique, A., Joosen, W.: On the state of nosql benchmarks. In: ICPE (2017)

    Google Scholar 

  20. Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence. Pearson Education, London (2012)

    Google Scholar 

  21. Seybold, D., Domaschka, J.: A cloud-centric survey on distributed database evaluation. Technical report. Ulm University (2017)

    Google Scholar 

  22. Seybold, D., Wagner, N., Erb, B., Domaschka, J.: Is elasticity of scalable databases a myth? In: IEEE Big Data (2016)

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the EC’s Framework Programme HORIZON 2020 under grant agreement number 644690 (CloudSocket) and 731664 (MELODIC). We thank Moritz Keppler and the Daimler TSS for their valuable and constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Seybold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Seybold, D., Domaschka, J. (2017). Is Distributed Database Evaluation Cloud-Ready?. In: Kirikova, M., et al. New Trends in Databases and Information Systems. ADBIS 2017. Communications in Computer and Information Science, vol 767. Springer, Cham. https://doi.org/10.1007/978-3-319-67162-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67162-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67161-1

  • Online ISBN: 978-3-319-67162-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics