Nothing Special   »   [go: up one dir, main page]

Skip to main content

Consistency in Distributed Storage Systems

An Overview of Models, Metrics and Measurement Approaches

  • Conference paper
Networked Systems (NETYS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7853))

Included in the following conference series:

Abstract

Due to the advent of eventually consistent storage systems, consistency has become a focus of research. Still, a clear overview of consistency in distributed systems is missing. In this work, we define and describe consistency, show how different consistency models and perspectives are related and briefly discuss how concrete consistency guarantees of a distributed storage system can be measured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abadi, D.: Consistency tradeoffs in modern distributed database system design: Cap is only part of the story. Computer 45(2), 37–42 (2012)

    Article  MathSciNet  Google Scholar 

  2. Anderson, E., Li, X., Shah, M., Tucek, J., Wylie, J.: What consistency does your key-value store actually provide. In: HotDep (2010)

    Google Scholar 

  3. Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J., Stoica, I.: The potential dangers of causal consistency and an explicit solution. In: Proceedings of the Third ACM Symposium on Cloud Computing, p. 22. ACM (2012)

    Google Scholar 

  4. Bailis, P., Venkataraman, S., Hellerstein, J., Stoica, I.: Probabilistically bounded staleness for practical partial quorums. VLDB Endowment (2012)

    Google Scholar 

  5. Bailis, P.: When is “acid” acid? rarely, http://www.bailis.org/blog/when-is-acid-acid-rarely (accessed January 28, 2013)

  6. Baker, J., Bond, C., Corbett, J., Furman, J., Khorlin, A., Larson, J., Léon, J., Li, Y., Lloyd, A., Yushprakh, V.: Megastore: providing scalable, highly available storage for interactive services. In: Proceedings of Conference on Innovative Data Systems Research

    Google Scholar 

  7. Bermbach, D., Kuhlenkamp, J., Derre, B., Klems, M., Tai, S.: A middleware guaranteeing client-centric consistency on top of eventually consistent datastores. In: IC2E. IEEE (2013)

    Google Scholar 

  8. Bermbach, D., Tai, S.: Eventual consistency: How soon is eventual? an evaluation of amazon s3’s consistency behavior. In: Proceedings of the 6th Workshop on Middleware for Service Oriented Computing, p. 1. ACM (2011)

    Google Scholar 

  9. Brzezinski, J., Sobaniec, C., Wawrzyniak, D.: From session causality to causal consistency. In: PDP (2004)

    Google Scholar 

  10. Brzeziński, J., Sobaniec, C., Wawrzyniak, D.: Session guarantees to achieve PRAM consistency of replicated shared objects. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 1–8. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra, T., Fikes, A., Gruber, R.: Bigtable: A distributed storage system for structured data. ACM Transactions on Computer Systems (TOCS) 26(2), 1–26 (2008)

    Article  MATH  Google Scholar 

  12. Chihoub, H., Ibrahim, S., Antoniu, G., Pérez, M., et al.: Consistency in the cloud: When money does matter! (2012)

    Google Scholar 

  13. Chihoub, H., Ibrahim, S., Antoniu, G., Pérez, M., et al.: Harmony: Towards automated self-adaptive consistency in cloud storage. In: IEEE CLUSTER (2012)

    Google Scholar 

  14. Chockler, G., Guerraoui, R., Keidar, I., Vukolic, M.: Reliable distributed storage. Computer 42(4), 60–67 (2009)

    Article  Google Scholar 

  15. Codd, E.F.: The relational model for database management: Version 2. Addison-Wesley, Reading (1990)

    MATH  Google Scholar 

  16. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available key-value store. In: Proc. SOSP (2007)

    Google Scholar 

  17. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. ACM SIGOPS Operating Systems Review 37(5), 29–43 (2003)

    Article  Google Scholar 

  18. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM SIGACT News 33(2), 59 (2002)

    Article  Google Scholar 

  19. Golab, W., Li, X., Shah, M.: Analyzing consistency properties for fun and profit. In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 197–206. ACM (2011)

    Google Scholar 

  20. Guerraoui, R., Garbinato, B., Mazouni, K.: The garf library of dsm consistency models. In: Proceedings of the 6th Workshop on ACM SIGOPS European Workshop: Matching Operating Systems to Application Needs, pp. 51–56. ACM (1994)

    Google Scholar 

  21. Guerraoui, R., Hari, C.: On the consistency problem in mobile distributed computing. In: Proceedings of the Second ACM International Workshop on Principles of Mobile Computing, pp. 51–57. ACM (2002)

    Google Scholar 

  22. Helland, P., Campbell, D.: Building on quicksand. In: CIDR (2009)

    Google Scholar 

  23. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

    Article  Google Scholar 

  24. Kraska, T., Hentschel, M., Alonso, G., Kossmann, D.: Consistency rationing in the cloud: Pay only when it matters. In: Proceedings of the VLDB Endowment (2009)

    Google Scholar 

  25. Krishnamurthy, S., Sanders, W., Cukier, M.: An adaptive framework for tunable consistency and timeliness using replication. In: DSN. IEEE (2002)

    Google Scholar 

  26. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. ACM SIGOPS Operating Systems Review 44(2), 35–40 (2010)

    Article  Google Scholar 

  27. Lamport, L.: Paxos made simple. ACM SIGACT News 32(4), 18–25 (2001)

    Google Scholar 

  28. Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N., Rodrigues, R.: Making geo-replicated systems fast as possible, consistent when necessary. Tech. rep., Technical report, MPI-SWS (2012), http://www.mpi-sws.org/chengli/rbTR.pdf

  29. Lloyd, W., Freedman, M., Kaminsky, M., Andersen, D.: Don’t settle for eventual: scalable causal consistency for wide-area storage with cops. In: SOSP. ACM (2011)

    Google Scholar 

  30. Mahajan, P., Alvisi, L., Dahlin, M.: Consistency, availability, and convergence. Technical Report TR-11-22, University of Texas at Austin (2011)

    Google Scholar 

  31. Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., Gibson, G., Fuchs, A., Rinaldi, B.: Ycsb++: benchmarking and performance debugging advanced features in scalable table stores. In: SOCC. ACM (2011)

    Google Scholar 

  32. Rahman, M., Golab, W., AuYoung, A., Keeton, K., Wylie, J.: Toward a principled framework for benchmarking consistency. In: Proceedings of the 8th Workshop on Hot Topics in System Dependability (2012)

    Google Scholar 

  33. Ramakrishnan, R.: Cap and cloud data management. Computer (2012)

    Google Scholar 

  34. Tanenbaum, A.S., Steen, M.V.: Distributed systems: principles and paradigms, 2nd edn. Pearson, Prentice Hall, Upper Saddle River, NJ (2007)

    Google Scholar 

  35. Torres-Rojas, F., Ahamad, M., Raynal, M.: Timed consistency for shared distributed objects. In: Proceedings of the Eighteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 163–172. ACM (1999)

    Google Scholar 

  36. Torres-Rojas, F., Meneses, E.: Convergence through a weak consistency model: Timed causal consistency. CLEI Electronic Journal 8(2) (2005)

    Google Scholar 

  37. Vogels, W.: Eventually consistent. Queue 6, 14–19 (2008)

    Article  Google Scholar 

  38. Wada, H., Fekete, A., Zhao, L., Lee, K., Liu, A.: Data consistency properties and the trade offs in commercial cloud storages: the consumers’ perspective. In: 5th Biennial Conference on Innovative Data Systems Research, CIDR, vol. 11 (2011)

    Google Scholar 

  39. Yu, H., Vahdat, A.: Design and evaluation of a conit-based continuous consistency model for replicated services. ACM TOCS (2002)

    Google Scholar 

  40. Zellag, K., Kemme, B.: How consistent is your cloud application? In: Proceedings of the Third ACM Symposium on Cloud Computing, p. 6. ACM (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bermbach, D., Kuhlenkamp, J. (2013). Consistency in Distributed Storage Systems. In: Gramoli, V., Guerraoui, R. (eds) Networked Systems. NETYS 2013. Lecture Notes in Computer Science, vol 7853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40148-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40148-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40147-3

  • Online ISBN: 978-3-642-40148-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics