Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptation to Market Development Through Price Setting Strategies in Agent-Based Artificial Economic Model

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10448))

Included in the following conference series:

  • 1808 Accesses

Abstract

The paper is focused on the incorporation of costs in relation to the selection of the price setting strategies which, in general, represent crucial part of economic agents’ decision making. Study and research of efficient decision making related to the price setting are important especially in agent-based economic systems which are intended application area for obtained results. This paper provides detailed description of various cost types used in traditional economic analysis and an effort has been made to identify constant (i.e. stable) and/or dynamic factors, typically related to the volume of production) in the cost calculation. Simulation part supports provided discussion about these design questions of artificial economic models in several scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Premm, M., Kirn, S.: A multiagent systems perspective on industry 4.0 supply networks. In: Müller, P.J., Ketter, W., Kaminka, G., Wagner, G., Bulling, N. (eds.) MATES 2015. LNCS, vol. 9433, pp. 101–118. Springer, Cham (2015). doi:10.1007/978-3-319-27343-3_6

    Chapter  Google Scholar 

  2. Brusaferri, A., Ballarino, A., Carpanzano, E.: Distributed intelligent automation solutions for self-adaptive manufacturing plants. In: Ortiz, Á., Franco, R.D., Gasquet, P.G. (eds.) BASYS 2010. IAICT, vol. 322, pp. 205–213. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14341-0_24

    Chapter  Google Scholar 

  3. Bureš, V., Tučník, P.: Complex agent-based models: application of a constructivism in the economic research. Ekon. Manage. 17, 152–168 (2014)

    Google Scholar 

  4. Hamichi, S., Brée, D., Guessoum, Z., Mangalagiu, D.: A multi-agent system for adaptive production networks. In: Di Tosto, G., Van Dyke Parunak, H. (eds.) MABS 2009. LNCS, vol. 5683, pp. 49–60. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13553-8_5

    Chapter  Google Scholar 

  5. Skobelev, P., Budaev, D., Laruhin, V., Levin, E., Mayorov, I.: Practical approach and multi-agent platform for designing real time adaptive scheduling systems. In: Corchado, J.M., et al. (eds.) PAAMS 2014. CCIS, vol. 430, pp. 1–12. Springer, Cham (2014). doi:10.1007/978-3-319-07767-3_1

    Chapter  Google Scholar 

  6. Chen, P., Zhu, L., Li, X.: Multi-resource balanced scheduling optimization based on self-adaptive genetic algorithm. In: Cai, Z., Tong, H., Kang, Z., Liu, Y. (eds.) ISICA 2010. CCIS, vol. 107, pp. 19–28. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16388-3_3

    Chapter  Google Scholar 

  7. Steinbauer, G., Wotawa, F.: Model-based reasoning for self-adaptive systems – theory and practice. In: Cámara, J., de Lemos, R., Ghezzi, C., Lopes, A. (eds.) Assurances for Self-Adaptive Systems. LNCS, vol. 7740, pp. 187–213. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36249-1_7

    Chapter  Google Scholar 

  8. Zaeh, M.F., Ostgathe, M., Geiger, F., Reinhart, G.: Adaptive job control in the cognitive factory. In: ElMaraghy, H.A. (ed.) Enabling Manufacturing Competitiveness and Economic Sustainability, pp. 10–17. Springer, Heidelberg (2012). doi:10.1007/978-3-642-23860-4_2

    Chapter  Google Scholar 

  9. Gehrke, J., Herzog, O., Langer, H., Malaka, R., Porzel, R., Warden, T.: An agent-based approach to autonomous logistic processes. Künstl. Intell. 24, 137–141 (2010)

    Article  Google Scholar 

  10. Walker, J.: Chapter 9 - The analysis of cost. In: Accounting in a Nutshell, 3rd edn., pp. 227–253. CIMA Publishing, Oxford (2009)

    Chapter  Google Scholar 

  11. Mahanty, A.K.: Chapter Nine - Theory of costs. In: Intermediate Microeconomics with Applications. Academic Press, New York, pp. 211–239 (1980)

    Chapter  Google Scholar 

  12. Weller, P.: 15 - Economic theory 2: Microeconomics A2 - Fletcher, John. In: Information Sources, 2nd edn., pp. 228–233. Butterworth-Heinemann, Oxford (1984)

    Google Scholar 

Download references

Acknowledgements

The Financial support of the Specific Research Project “Autonomous Socio-Economics Systems” of FIM UHK is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Tucnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tucnik, P., Blecha, P., Kovarnik, J. (2017). Adaptation to Market Development Through Price Setting Strategies in Agent-Based Artificial Economic Model. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10448. Springer, Cham. https://doi.org/10.1007/978-3-319-67074-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67074-4_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67073-7

  • Online ISBN: 978-3-319-67074-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics