Abstract
The practical approach and multi-agent platform development for adaptive scheduling systems for real time resource management are considered. The approach is based on concept of demand and resource networks (DRN) where agents of demands and resources operate on virtual market and continuously trying to improve their individual values of satisfaction functions that reflects given multi-criteria objectives. To achieve the best possible results agents use the virtual money account that regulates their behavior and can increase by getting bonuses or decrease by penalties depending of their individual cost functions. The key rule of designed virtual market is that any agent that is searching for new better position in schedule must compensate losses for those conflicting agents who are able and agree to change their allocations to other resources after the initial agent request, with required amount of compensation determined in the process of re-allocations. This approach allows to balance many criteria for getting consensus between agents and adaptation of the schedules “on the fly” by events without any stop and restart of the system. The developed platform includes key classes of DRN agents and protocols of their negotiations and other components that help to develop the solution manage data and visualize results of scheduling. The platform provides rapid prototyping of multi-agent systems for real time resource management and helps to reduce man-efforts and time of development. The platform was applied for developing of multi-agent scheduling systems for managing resources in aircraft jet production, load balancing in computer grid networks and energy production in power-, gas- and heating networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Leung, J.: Handbook of Scheduling: Algorithms, Models and Performance Analysis. CRC Computer and Information Science Series. Chapman & Hall (2004)
Voß, S.: Meta-heuristics: The state of the art. In: Nareyek, A. (ed.) ECAI-WS 2000. LNCS (LNAI), vol. 2148, pp. 1–23. Springer, Heidelberg (2001)
Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier Science (2006)
Shoham, Y., Leyton-Brown, K.: Multi-Agent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, New York (2009)
Mailler, R., Lesser, V.: Solving distributed constraint optimization problems using cooperative mediation. In: 3rd Int. Joint Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2004), pp. 438–445. IEEE Computer Society, New York (2004)
Meisels, A.: Distributed Search by Constrained. Springer (2008)
Petcu, A.: A class of Algorithms For Distributed Constraint. IOS Press (2009)
Yokoo, M.: Distributed Constraint Satisfaction: Foundation of Cooperation in Multi-agent Systems. Springer (2001)
Tasgetiren, M., Sevkli, M., Liang, Y., Yenisey, M.: Particle swarm optimization and differential evolution algorithms for job shop scheduling problem. International Journal of Operational Research 3(2), 120–135 (2006)
Mekni, S., Fayech, B., Ksouri, M.: TRIBES Optimization Algorithm Applied to the Flexible Job Shop Scheduling Problem. In: 10th IFAC Workshop on Intelligent Manufacturing Systems, Lisbon, Portugal, July 1-2, pp. 365–370 (2010)
Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Springer (2008)
Levner, E.: Multiprocessor Scheduling, Theory and Applications. I-TECH Education and Publishing (2007)
Bonabeau, E., Theraulaz, G.: Swarm Smarts. What computers are learning from them? Scientific American 282(3), 54–61 (2000)
Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L.: Reference architecture for holonic manufacturing systems: PROSA. Computer in Industry 37(3), 255–274 (1998)
Leitao, P., Vrba, P.: Recent Developments and Future Trends of Industrial Agents. In: Proc. of 5th Int. Conf. on Holonic and Multi-Agent systems in Manufacturing, France, Tolouse, pp. 15–28. Springer, Berlin (2011)
Prigogine, I., Stengers, I.: Order and Chaos: Man’s dialogue with nature. Flamingo (1984)
Nicolis, G., Prigogine, I.: Exploring complexity: An introduction. W.H. Freeman, New York (1989)
Skobelev, P.: Open multi-agent systems for decision making support. Avtometriya, Journal of Siberian Branch of Russian Academy of Science 6, 45–61 (2002)
Skobelev, P., Vittikh, V.: Models of Self-organization for Designing Demand-Resource Networks, Automation and Control. Journal of Russian Academy of Science 1, 177–185 (2003)
Vittikh, V., Skobelev, P.: The compensation method of agents interactions for real time resource allocation. Avtometriya, Journal of Siberian Branch of Russian Academy of Science (2), 78–87 (2009)
Skobelev, P.: Multi-Agent Systems for Real Time Resource Allocation, Scheduling, Optimization and Controlling: Industrial Applications. In: Mařík, V., Vrba, P., Leitão, P. (eds.) HoloMAS 2011. LNCS, vol. 6867, pp. 1–14. Springer, Heidelberg (2011)
Madsen, B., Rzevski, G., Skobelev, P., Tsarev, A.: Real-time multi-agent forecasting & replenishment solution for LEGOs branded retail outlets. In: Proc. of 13th ACIS Int. Conf. on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2012), Kyoto, Japan, August 8-10, pp. 451–456 (2012)
Granichin, O., Skobelev, P., Lada, A., Mayorov, I., Tsarev, A.: Cargo transportation models analysis using multi-agent adaptive real-time truck scheduling system. In: Proceedings of the 5th Int. Conf. on Agents and Artificial Intelligence (ICAART 2013), Barcelona, Spain, February 15-18, vol. 2, pp. 244–249. SciTePress, Portugal (2013)
Goryachev, A., Kozhevnikov, S., Kolbova, E., Kuznetsov, O., Simonova, E., Skobelev, P., Tsarev, A., Shepilov, Y.: Smart Factory: Intelligent system for workshop resource allocation, scheduling, optimization and controlling in real time. In: Proc. of Int. Conf. Manufacturing 2012, Macao, China, vol. 630, pp. 508–513. Materials Research (2013)
Vittikh, V., Larukhin, V., Tsarev, A.: Actors, Holonic Enterprises, Ontologies and Multi-Agent Technology. In: Mařík, V., Lastra, J.L.M., Skobelev, P. (eds.) HoloMAS 2013. LNCS, vol. 8062, pp. 13–24. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Skobelev, P., Budaev, D., Laruhin, V., Levin, E., Mayorov, I. (2014). Practical Approach and Multi-agent Platform for Designing Real Time Adaptive Scheduling Systems. In: Corchado, J.M., et al. Highlights of Practical Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection. PAAMS 2014. Communications in Computer and Information Science, vol 430. Springer, Cham. https://doi.org/10.1007/978-3-319-07767-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-07767-3_1
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07766-6
Online ISBN: 978-3-319-07767-3
eBook Packages: Computer ScienceComputer Science (R0)