Nothing Special   »   [go: up one dir, main page]

Skip to main content

FCA-ARMM: A Model for Mining Association Rules from Formal Concept Analysis

  • Conference paper
  • First Online:
Recent Advances on Soft Computing and Data Mining (SCDM 2016)

Abstract

The evolution of technology in this era has contributed to a growing of abundant data. Data mining is a well-known computational process in discovering meaningful and useful information from large data repositories. There are various techniques in data mining that can be deal with this situation and one of them is association rule mining. Formal Concept Analysis (FCA) is a method of conceptual knowledge representation and data analysis. It has been applied in various disciplines including data mining. Extracting association rule from constructed FCA is very promising study but it is quite challenging, not straight forward and nearly unfocused. Therefore, in this paper we proposed an Integrated Formal Concept Analysis–Association Rule Mining Model (FCA-ARMM) and an open source tool called FCA-Miner. The results show that FCA-ARMM with FCA-Miner successful in generating the association rule from the real dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference Very Large Data Bases (VLDB), vol. 1215, pp. 487–499. VLDB Endowment (1994)

    Google Scholar 

  2. Abdullah, Z., Herawan, T., Deris, M.M.: An alternative measure for mining weighted least association rule and its framework. In: Zain, J.M., et al. (eds.) ICSECS 2011, vol. 188, pp. 475–485. Springer, Heidelberg (2011). Part II

    Google Scholar 

  3. Abdullah, Z., Herawan, T., Ahmad, N., Deris, M.M.: Mining significant association rules from educational data using critical relative support approach. Procedia Soc. Behav. Sci. 28, 97–101 (2011). Science Direct

    Google Scholar 

  4. Abdullah, Z., Herawan, T., Deris, M.M.: Detecting definite least association rule in medical database. In: Herawan, T., Deris, M.M., Abawajy, J. (eds.) DaEng-2013. LNEE, vol. 285, pp. 127–134. Springer, Heidelberg (2014)

    Google Scholar 

  5. Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Formal concept analysis in knowledge discovery: a survey. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS-ConceptStruct 2010. LNCS, vol. 6208, pp. 139–153. Springer, Heidelberg (2010). 10.1007/978-3-642-14197-3_15

  6. Wille, R.: Formal concept analysis as mathematical theory of concepts and concept hierarchies. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS, vol. 3626, pp. 1–33. Springer, Heidelberg (2005). doi:10.1007/11528784_1

    Chapter  MATH  Google Scholar 

  7. Valtchev, P., Missaoui, R., Lebrun, P.: A partition-based approach towards constructing Galois (concept) lattices. Discrete Math. 256(3), 801–829 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1999). doi:10.1007/3-540-49257-7_25

    Chapter  Google Scholar 

  9. Stumme, G.: Efficient data mining based on formal concept analysis. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 534–546. Springer, Heidelberg (2002). doi:10.1007/3-540-46146-9_53

    Chapter  Google Scholar 

  10. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed lattices. Inf. Syst. 24(1), 25–46 (1999). Elsevier

    Article  MATH  Google Scholar 

  11. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Fast computation of concept lattices using data mining techniques. In: Proceeding of 7th International Workshop on Knowledge Representation Meets Databases, pp. 129–139 (2000)

    Google Scholar 

  12. Ourida, B.B.S., Waf, T.: Formal concept analysis based association rules extraction. Int. J. Comput. Sci. Issues 8(4), 490–497 (2011). No. 2

    Google Scholar 

  13. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Pruning closed itemset lattices for association rules. In: N Actes Bases De Données Avancées, pp. 177–196 (1998)

    Google Scholar 

  14. Zaki, M.J., Hsiao, C.-J.: Chaarm: an efficient algorithm for closed association rule mining, Technical report, Computer Science Department, Rensselaer Polytechnic, pp. 1–20 (1999)

    Google Scholar 

  15. Zaki, M.J., Hsiao, C.-J.: Efficient algorithms for mining closed itemsets and their lattice structure. IEEE Trans. Knowl. Data Eng. 17(4), 462–478 (2005)

    Article  Google Scholar 

  16. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing Iceberg concept lattices with titanic. Data Knowl. Eng. 42(2), 189–222 (2002)

    Article  MATH  Google Scholar 

  17. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Proceeding of the 7th International Conference on Database Theory (ICDT 1999), pp. 398–416 (1999)

    Google Scholar 

  18. Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms based on Galois (concept) lattices. Comput. Intell. 11(2), 246–267 (1995)

    Article  Google Scholar 

  19. Xie, Z.P., Liu, Z.T.: Concept lattice and association rule discovery. J. Comput. Res. Dev. 37(12), 1415–1421 (2000). (in Chinese)

    Google Scholar 

  20. Liang, J., Wang, J.: A new lattice structure and method for extracting association rules based on concept lattice. Int. J. Comput. Sci. Netw. Secur. 6(11), 107–114 (2006)

    Google Scholar 

  21. Burdick, D., Calimlim, M., Gehrke, J.: Mafia: a maximal frequent itemset algorithm for transactional databases. In: Proceeding of the 17th International Conference on Data Engineering, pp. 443–452. IEEE Computer Society (2001)

    Google Scholar 

  22. Abdullah, Z., Herawan, T., Deris, M.M.: Mining significant least association rules using fast SLP-growth algorithm. In: Kim, T.H., Adeli, H. (eds.) AST/UCMA/ISA/ACN 2010. LNCS, vol. 6059, pp. 324–336. Springer, Heidelberg (2010)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the research grant from Research Acceleration Center Excellence (RACE) of Universiti Kebangsaan Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zailani Abdullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Abdullah, Z., Saman, M.Y.M., Karim, B., Herawan, T., Deris, M.M., Hamdan, A.R. (2017). FCA-ARMM: A Model for Mining Association Rules from Formal Concept Analysis. In: Herawan, T., Ghazali, R., Nawi, N.M., Deris, M.M. (eds) Recent Advances on Soft Computing and Data Mining. SCDM 2016. Advances in Intelligent Systems and Computing, vol 549. Springer, Cham. https://doi.org/10.1007/978-3-319-51281-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51281-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51279-2

  • Online ISBN: 978-3-319-51281-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics