Abstract
The evolution of technology in this era has contributed to a growing of abundant data. Data mining is a well-known computational process in discovering meaningful and useful information from large data repositories. There are various techniques in data mining that can be deal with this situation and one of them is association rule mining. Formal Concept Analysis (FCA) is a method of conceptual knowledge representation and data analysis. It has been applied in various disciplines including data mining. Extracting association rule from constructed FCA is very promising study but it is quite challenging, not straight forward and nearly unfocused. Therefore, in this paper we proposed an Integrated Formal Concept Analysis–Association Rule Mining Model (FCA-ARMM) and an open source tool called FCA-Miner. The results show that FCA-ARMM with FCA-Miner successful in generating the association rule from the real dataset.
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference Very Large Data Bases (VLDB), vol. 1215, pp. 487–499. VLDB Endowment (1994)
Abdullah, Z., Herawan, T., Deris, M.M.: An alternative measure for mining weighted least association rule and its framework. In: Zain, J.M., et al. (eds.) ICSECS 2011, vol. 188, pp. 475–485. Springer, Heidelberg (2011). Part II
Abdullah, Z., Herawan, T., Ahmad, N., Deris, M.M.: Mining significant association rules from educational data using critical relative support approach. Procedia Soc. Behav. Sci. 28, 97–101 (2011). Science Direct
Abdullah, Z., Herawan, T., Deris, M.M.: Detecting definite least association rule in medical database. In: Herawan, T., Deris, M.M., Abawajy, J. (eds.) DaEng-2013. LNEE, vol. 285, pp. 127–134. Springer, Heidelberg (2014)
Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Formal concept analysis in knowledge discovery: a survey. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS-ConceptStruct 2010. LNCS, vol. 6208, pp. 139–153. Springer, Heidelberg (2010). 10.1007/978-3-642-14197-3_15
Wille, R.: Formal concept analysis as mathematical theory of concepts and concept hierarchies. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS, vol. 3626, pp. 1–33. Springer, Heidelberg (2005). doi:10.1007/11528784_1
Valtchev, P., Missaoui, R., Lebrun, P.: A partition-based approach towards constructing Galois (concept) lattices. Discrete Math. 256(3), 801–829 (2002)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1999). doi:10.1007/3-540-49257-7_25
Stumme, G.: Efficient data mining based on formal concept analysis. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 534–546. Springer, Heidelberg (2002). doi:10.1007/3-540-46146-9_53
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed lattices. Inf. Syst. 24(1), 25–46 (1999). Elsevier
Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Fast computation of concept lattices using data mining techniques. In: Proceeding of 7th International Workshop on Knowledge Representation Meets Databases, pp. 129–139 (2000)
Ourida, B.B.S., Waf, T.: Formal concept analysis based association rules extraction. Int. J. Comput. Sci. Issues 8(4), 490–497 (2011). No. 2
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Pruning closed itemset lattices for association rules. In: N Actes Bases De Données Avancées, pp. 177–196 (1998)
Zaki, M.J., Hsiao, C.-J.: Chaarm: an efficient algorithm for closed association rule mining, Technical report, Computer Science Department, Rensselaer Polytechnic, pp. 1–20 (1999)
Zaki, M.J., Hsiao, C.-J.: Efficient algorithms for mining closed itemsets and their lattice structure. IEEE Trans. Knowl. Data Eng. 17(4), 462–478 (2005)
Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing Iceberg concept lattices with titanic. Data Knowl. Eng. 42(2), 189–222 (2002)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Proceeding of the 7th International Conference on Database Theory (ICDT 1999), pp. 398–416 (1999)
Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms based on Galois (concept) lattices. Comput. Intell. 11(2), 246–267 (1995)
Xie, Z.P., Liu, Z.T.: Concept lattice and association rule discovery. J. Comput. Res. Dev. 37(12), 1415–1421 (2000). (in Chinese)
Liang, J., Wang, J.: A new lattice structure and method for extracting association rules based on concept lattice. Int. J. Comput. Sci. Netw. Secur. 6(11), 107–114 (2006)
Burdick, D., Calimlim, M., Gehrke, J.: Mafia: a maximal frequent itemset algorithm for transactional databases. In: Proceeding of the 17th International Conference on Data Engineering, pp. 443–452. IEEE Computer Society (2001)
Abdullah, Z., Herawan, T., Deris, M.M.: Mining significant least association rules using fast SLP-growth algorithm. In: Kim, T.H., Adeli, H. (eds.) AST/UCMA/ISA/ACN 2010. LNCS, vol. 6059, pp. 324–336. Springer, Heidelberg (2010)
Acknowledgement
This work is supported by the research grant from Research Acceleration Center Excellence (RACE) of Universiti Kebangsaan Malaysia.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Abdullah, Z., Saman, M.Y.M., Karim, B., Herawan, T., Deris, M.M., Hamdan, A.R. (2017). FCA-ARMM: A Model for Mining Association Rules from Formal Concept Analysis. In: Herawan, T., Ghazali, R., Nawi, N.M., Deris, M.M. (eds) Recent Advances on Soft Computing and Data Mining. SCDM 2016. Advances in Intelligent Systems and Computing, vol 549. Springer, Cham. https://doi.org/10.1007/978-3-319-51281-5_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-51281-5_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-51279-2
Online ISBN: 978-3-319-51281-5
eBook Packages: EngineeringEngineering (R0)