Abstract
We propose a real-time system to detect and track multiple humans from high bird’s-eye views. First, we present a fast pipeline to detect humans observed from large distances by efficiently fusing information from a visual and infrared spectrum camera. The main contribution of our work is a new tracking approach. Its novelty lies in online learning of an objectness model which is used for updating a Kalman filter. We show that an adaptive objectness model outperforms a fixed model. Our system achieves a mean tracking loop time of 0.8 ms per human on a 2 GHz CPU which makes real time tracking of multiple humans possible.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. (CSUR) 38, 13 (2006)
Stalder, S., Grabner, H., Gool, L.: Dynamic objectness for adaptive tracking. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7726, pp. 43–56. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37431-9_4
Liang, P., Pang, Y., Liao, C., Mei, X., Ling, H.: Adaptive objectness for object tracking, IEEE (2015)
Alexe, B., Deselaers, T., Ferrari, V.: What is an object? In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 73–80. IEEE (2010)
Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.: BING: binarized normed gradients for objectness estimation at 300fps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3286–3293 (2014)
Yang, J., Yan, R., Hauptmann, A.G.: Adapting SVM classifiers to data with shifted distributions. In: Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007), pp. 69–76. IEEE (2007)
Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. J. Mach. Learn. Res. 7, 551–585 (2006)
Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)
Cuevas, E.V., Zaldivar, D., Rojas, R.: Kalman filter for vision tracking (2005)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)
Wu, Z., Fuller, N., Theriault, D., Betke, M.: A thermal infrared video benchmark for visual analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 201–208 (2014)
Davis, J.W., Keck, M.A.: A two-stage template approach to person detection in thermal imagery. WACV/MOTION 5, 364–369 (2005)
Davis, J.W., Sharma, V.: Background-subtraction using contour-based fusion of thermal and visible imagery. Comput. Vis. Image Underst. 106, 162–182 (2007)
Vempati, A.S., Agamennoni, G., Stastny, T., Siegwart, R.: Victim detection from a fixed-wing UAV: experimental results. In: Bebis, G. (ed.) ISVC 2015. LNCS, vol. 9474, pp. 432–443. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27857-5_39
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)
Vidas, S., Lakemond, R., Denman, S., Fookes, C., Sridharan, S., Wark, T.: A mask-based approach for the geometric calibration of thermal-infrared cameras. IEEE Trans. Instrum. Meas. 61, 1625–1635 (2012)
Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34, 743–761 (2012)
Acknowledgment
The research leading to these results has received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 600958 (SHERPA).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Kümmerle, J., Hinzmann, T., Vempati, A.S., Siegwart, R. (2016). Real-Time Detection and Tracking of Multiple Humans from High Bird’s-Eye Views in the Visual and Infrared Spectrum. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_49
Download citation
DOI: https://doi.org/10.1007/978-3-319-50835-1_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50834-4
Online ISBN: 978-3-319-50835-1
eBook Packages: Computer ScienceComputer Science (R0)