Abstract
Two major search paradigms have been proposed for SAT solving: Systematic Search (SS) and Stochastic Local Search (SLS). In SAT competitions, while SLS solvers are effective on uniform random instances, SS solvers dominate SLS solvers on application instances with internal structures. One important structural property is decomposability. SS solvers have long been exploited the decomposability of application instances with success. We conjecture that SLS solvers can be improved by exploiting decomposability of application instances, and propose the first step toward exploiting decomposability with SLS solvers using pseudo backbones. We then propose two SAT-specific optimizations that lead to better decomposition than on general pseudo Boolean optimization problems. Our empirical study suggests that pseudo backbones can vastly simplify SAT instances, which further results in decomposing the instances into thousands of connected components. This decomposition serves as a key stepping stone for applying the powerful recombination operator, partition crossover, to the SAT domain. Moreover, we establish a priori analysis for identifying problem instances with potential decomposability using visualization of MAXSAT instances and treewidth.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
The original benchmark set in the industrial track contains 150 satisfiable instances, but openstacks-sequencedstrips-nonadl-nonnegated-os-sequencedstrips-p30_3.085-SAT.cnf and openstacks-p30_3.085-SAT.cnf are identical, despite their different names.
- 3.
We use the Python package graph-tool (https://graph-tool.skewed.de/). Graph-tool is known for its efficiency on large graphs, due to its C++ core implementation.
References
Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM (1971)
Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods Syst. Des. 19(1), 7–34 (2001)
Velev, M.N., Bryant, R.E.: Effective use of Boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors. J. Symb. Comput. 35(2), 73–106 (2003)
Konev, B., Lisitsa, A.: Computer-aided proof of Erdős discrepancy properties. Artif. Intell. 224, 103–118 (2015)
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24605-3_37
Tompkins, D.A.D., Hoos, H.H.: UBCSAT: an implementation and experimentation environment for SLS algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005). doi:10.1007/11527695_24
The International SAT Competitions Webpage. http://www.satcompetition.org/
Amir, E., McIlraith, S.: Partition-based logical reasoning for first-order and propositional theories. Artif. Intell. 162(1), 49–88 (2005)
Prestwich, S.D.: CNF encodings. Handb. Satisfiability 185, 75–97 (2009)
Ansótegui, C., Giráldez-Cru, J., Levy, J., Simon, L.: Using community structure to detect relevant learnt clauses. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 238–254. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4_18
Bjesse, P., Kukula, J., Damiano, R., Stanion, T., Zhu, Y.: Guiding SAT diagnosis with tree decompositions. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 315–329. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24605-3_24
Huang, J., Darwiche, A.: A structure-based variable ordering heuristic for SAT. In: IJCAI, vol. 3, pp. 1167–1172 (2003)
Monnet, A., Villemaire, R.: Scalable formula decomposition for propositional satisfiability. In: Proceedings of the Third C* Conference on Computer Science and Software Engineering, pp. 43–52. ACM (2010)
Whitley, D., Hains, D., Howe, A.: Tunneling between optima: partition crossover for the traveling salesman problem. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 915–922. ACM (2009)
Tinós, R., Whitley, D., Chicano, F.: Partition crossover for pseudo-boolean optimization. In: Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII, pp. 137–149. ACM (2015)
Ochoa, G., Chicano, F., Tinós, R., Whitley, D.: Tunnelling crossover networks. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO 2015, pp. 449–456. ACM, New York (2015)
Lin, S.: Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 44(10), 2245–2269 (1965)
Tinós, R., Whitley, D., Ochoa, G.: Generalized asymmetric partition crossover (GAPX) for the asymmetric TSP. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 501–508. ACM (2014)
Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128(1), 11–45 (1987)
Zhang, W.: Configuration landscape analysis and backbone guided local search: part i: satisfiability and maximum satisfiability. Artif. Intell. 158, 1–26 (2004)
Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity from characteristic ‘phase transitions’. Nature 400(6740), 133–137 (1999)
Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)
Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)
Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118. Springer, Heidelberg (1988). doi:10.1007/3-540-19488-6_110
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discret. Methods 8(2), 277–284 (1987)
Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30577-4_1
Kroc, L., Sabharwal, A., Gomes, C.P., Selman, B.: Integrating systematic and local search paradigms: a new strategy for MaxSAT. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009, pp. 544–551. Morgan Kaufmann Publishers Inc., San Francisco (2009)
Li, C.M., Wei, W., Zhang, H.: Combining adaptive noise and look-ahead in local search for SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 121–133. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72788-0_15
Gaspers, S., Szeider, S.: Strong backdoors to bounded treewidth SAT. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 489–498. IEEE (2013)
Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005). doi:10.1007/11499107_5
Sinz, C.: Visualizing SAT instances and runs of the DPLL algorithm. J. Autom. Reason. 39(2), 219–243 (2007)
Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Softw.: Pract. Exp. 21(11), 129–1164 (1991)
Frank, J.D., Cheeseman, P., Stutz, J.: When gravity fails: local search topology. J. Artif. Intell. Res. 7, 249–281 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Chen, W., Whitley, D. (2017). Decomposing SAT Instances with Pseudo Backbones. In: Hu, B., López-Ibáñez, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2017. Lecture Notes in Computer Science(), vol 10197. Springer, Cham. https://doi.org/10.1007/978-3-319-55453-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-55453-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55452-5
Online ISBN: 978-3-319-55453-2
eBook Packages: Computer ScienceComputer Science (R0)