Nothing Special   »   [go: up one dir, main page]

Skip to main content

UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT and MAX-SAT

  • Conference paper
Theory and Applications of Satisfiability Testing (SAT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3542))

Abstract

In this paper we introduce UBCSAT, a new implementation and experimentation environment for Stochastic Local Search (SLS) algorithms for SAT and MAX-SAT. Based on a novel triggered procedure architecture, UBCSAT provides implementations of numerous well-known and widely used SLS algorithms for SAT and MAX-SAT, including GSAT, WalkSAT, and SAPS; these implementations generally match or exceed the efficiency of the respective original reference implementations. Through numerous reporting and statistical features, including the measurement of run-time distributions, UBCSAT facilitates the advanced empirical analysis of these algorithms. New algorithm variants, SLS algorithms, and reporting features can be added to UBCSAT in a straightforward and efficient way. UBCSAT is implemented in C and runs on numerous platforms and operating systems; it is publicly and freely available at www.satlib.org/ ubcsat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Audemard, G., Le Berre, D., Roussel, O., Lynce, I., Marques-Silva, J.: OpenSAT: an open source SAT software project. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–509. Springer, Heidelberg (2004)

    Google Scholar 

  2. Fukunaga, A.: Efficient implementations of SAT local search. In: Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 287–292. Springer, Heidelberg (2005)

    Google Scholar 

  3. Gent, I.P., Walsh, T.: Towards an understanding of hill–climbing procedures for SAT. In: Proc. of the Eleventh Nat’l Conf. on Artificial Intelligence (AAAI 1993), pp. 28–33 (1993)

    Google Scholar 

  4. Gent, I.P., Walsh, T.: Unsatisfied variables in local search. In: Hybrid Problems, Hybrid Solutions, pp. 73–85 (1995)

    Google Scholar 

  5. Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem. Computing 44, 279–303 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hoos, H.H.: On the run-time behaviour of stochastic local search algorithms for SAT. In: Proc. of the Sixteenth Nat’l Conf. on Artificial Intelligence (AAAI 1999), pp. 661–666 (1999)

    Google Scholar 

  7. Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proc. of the 18th Nat’l Conf. in Artificial Intelligence (AAAI 2002), pp. 655–660 (2002)

    Google Scholar 

  8. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  9. Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing: Efficient dynamic local search for SAT. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 233–248. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. on Modeling & Computer Simulation 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  11. Mazure, B., Saïs, L., Grégoire, É.: Tabu search for SAT. In: Proc. of the Fourteenth Nat’l Conf. on Artificial Intelligence (AAAI 1997), pp. 281–285 (1997)

    Google Scholar 

  12. McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search. In: Proc. of the Fourteenth Nat’l Conf. on Artificial Intelligence (AAAI 1997), pp. 321–326 (1997)

    Google Scholar 

  13. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proc. of the 12th Nat’l Conf. on Artificial Intelligence (AAAI 1994), pp. 337–343 (1994)

    Google Scholar 

  14. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: Proc. of the Tenth Nat’l Conf. on Artificial Intelligence (AAAI 1992), pp. 459–465 (1992)

    Google Scholar 

  15. Smyth, K., Hoos, H.H., Stützle, T.: Iterated robust tabu search for MAX-SAT. In: Proc. of the 16th Conf. of the Canadian Society for Computational Studies of Intelligence, pp. 129–144 (2003)

    Google Scholar 

  16. Tompkins, D.A.D., Hoos, H.H.: Warped landscapes and random acts of SAT solving. In: Proc. of the Eighth Int’l Symposium on Artificial Intelligence and Mathematics (ISAIM 2004) (2004)

    Google Scholar 

  17. Van Hentenryck, P., Michel, L.: Control abstractions for local search. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 65–80. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tompkins, D.A.D., Hoos, H.H. (2005). UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell, D.G. (eds) Theory and Applications of Satisfiability Testing. SAT 2004. Lecture Notes in Computer Science, vol 3542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527695_24

Download citation

  • DOI: https://doi.org/10.1007/11527695_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27829-0

  • Online ISBN: 978-3-540-31580-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics