Nothing Special   »   [go: up one dir, main page]

Skip to main content

Data Association Based Multi-target Tracking Using a Joint Formulation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10114))

Included in the following conference series:

Abstract

We revisit the classical conditional random filed based tracking-by-detection framework for multi-target tracking, in which function factors associating pairs of short tracklets in a long term are modeled to produce final tracks. Unlike most previous approaches which only focus on modeling feature difference for distinguishing pairs of targets, we propose to directly model the joint formulation of pairs of tracklets for association in the CRF framework. To this end, we use a Hough Forest (HF) based learning framework to effectively learn a discriminative codebook of features among tracklets by utilizing appearance and motion cues stored in the leaf nodes. Given the learned codebook, the joint formulation of tracklet pairs can be directly modeled in a nonparametric manner by defining a sharing and excluding matrix. Then all of the statistics required in CRF inference can be directly estimated. Extensive experiments have been conducted on several public datasets, and the performance is comparable to the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I–511. IEEE (2001)

    Google Scholar 

  2. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  3. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1627–1645 (2010)

    Article  Google Scholar 

  4. Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: Proceedings of the IEEE Conference Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  5. Yang, B., Nevatia, R.: Multi-target tracking by online learning a CRF model of appearance and motion patterns. Int. J. Comput. Vis. 107, 203–217 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Heili, A., López-Méndez, A., Odobez, J.M.: Exploiting long-term connectivity and visual motion in CRF-based multi-person tracking. IEEE Trans. Image Process. 23, 3040–3056 (2014)

    Article  MathSciNet  Google Scholar 

  7. Chen, D., Cao, X., Wang, L., Wen, F., Sun, J.: Bayesian face revisited: a joint formulation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 566–579. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33712-3_41

    Chapter  Google Scholar 

  8. Huang, C., Wu, B., Nevatia, R.: Robust object tracking by hierarchical association of detection responses. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 788–801. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88688-4_58

    Chapter  Google Scholar 

  9. Kuo, C.H., Nevatia, R.: How does person identity recognition help multi-person tracking?. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1217–1224. IEEE (2011)

    Google Scholar 

  10. Milan, A., Roth, S., Schindler, K.: Continuous energy minimization for multitarget tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36, 58–72 (2014)

    Article  Google Scholar 

  11. Kuo, C.H., Huang, C., Nevatia, R.: Multi-target tracking by on-line learned discriminative appearance models. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 685–692. IEEE (2010)

    Google Scholar 

  12. Bak, S., Chau, D.P., Badie, J., Corvee, E., Bremond, F., Thonnat, M.: Multi-target tracking by discriminative analysis on Riemannian manifold. In: 2012 19th IEEE International Conference on Image Processing (ICIP), pp. 1605–1608. IEEE (2012)

    Google Scholar 

  13. Zamir, A.R., Dehghan, A., Shah, M.: GMCP-tracker: global multi-object tracking using generalized minimum clique graphs. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision – ECCV 2012. LNCS, vol. 7573, pp. 343–356. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Yang, B., Huang, C., Nevatia, R.: Learning affinities and dependencies for multi-target tracking using a CRF model. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1233–1240. IEEE (2011)

    Google Scholar 

  15. Heili, A., Chen, C., Odobez, J.: Detection-based multi-human tracking using a CRF model. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1673–1680. IEEE (2011)

    Google Scholar 

  16. Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  17. Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1806–1819 (2011)

    Article  Google Scholar 

  18. Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE (2011)

    Google Scholar 

  19. Nima Razavi, J.G., Gool, L.V.: Scalable multi-class object detection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1505–1512. IEEE (2011)

    Google Scholar 

  20. Andriyenko, A., Schindler, K.: Multi-target tracking by continuous energy minimization. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1265–1272. IEEE (2011)

    Google Scholar 

  21. Pets 2009 dataset. (http://www.cvg.rdg.ac.uk/PETS2009)

  22. Ess, A., Leibe, B., Schindler, K., Van Gool, L.: Robust multiperson tracking from a mobile platform. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1831–1846 (2009)

    Article  Google Scholar 

  23. Benfold, B., Reid, I.: Stable multi-target tracking in real-time surveillance video. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3457–3464. IEEE (2011)

    Google Scholar 

  24. Leal-Taixe, L., Milan, A., Reid, I., Roth, S., Schindler, K.: Motchallenge 2015: Towards a benchmark for multi-target tracking

    Google Scholar 

  25. Yang, B., Nevatia, R.: An online learned CRF model for multi-target tracking. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2034–2041. IEEE (2012)

    Google Scholar 

  26. Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 2756–2759. IEEE (2010)

    Google Scholar 

  27. Li, Y., Huang, C., Nevatia, R.: Learning to associate: hybridboosted multi-target tracker for crowded scene. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2953–2960. IEEE (2009)

    Google Scholar 

  28. Andriyenko, A., Schindler, K., Roth, S.: Discrete-continuous optimization for multi-target tracking. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1926–1933. IEEE (2012)

    Google Scholar 

  29. Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1820–1833 (2011)

    Article  Google Scholar 

  30. Milan, A., Leal-Taixe, L., Schindler, K., Reid, I.: Joint tracking and segmentation of multiple targets. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5397–5406. IEEE (2015)

    Google Scholar 

  31. Leal Taixe, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., Savarese, S.: Learning an image-based motion context for multiple people tracking. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3542–3549. IEEE (2014)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant 61271328, 61671484 and 61401170.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nong Sang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xiang, J., Hou, J., Gao, C., Sang, N. (2017). Data Association Based Multi-target Tracking Using a Joint Formulation. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10114. Springer, Cham. https://doi.org/10.1007/978-3-319-54190-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54190-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54189-1

  • Online ISBN: 978-3-319-54190-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics