Abstract
We revisit the classical conditional random filed based tracking-by-detection framework for multi-target tracking, in which function factors associating pairs of short tracklets in a long term are modeled to produce final tracks. Unlike most previous approaches which only focus on modeling feature difference for distinguishing pairs of targets, we propose to directly model the joint formulation of pairs of tracklets for association in the CRF framework. To this end, we use a Hough Forest (HF) based learning framework to effectively learn a discriminative codebook of features among tracklets by utilizing appearance and motion cues stored in the leaf nodes. Given the learned codebook, the joint formulation of tracklet pairs can be directly modeled in a nonparametric manner by defining a sharing and excluding matrix. Then all of the statistics required in CRF inference can be directly estimated. Extensive experiments have been conducted on several public datasets, and the performance is comparable to the state of the art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I–511. IEEE (2001)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1627–1645 (2010)
Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: Proceedings of the IEEE Conference Computer Vision and Pattern Recognition (2009)
Yang, B., Nevatia, R.: Multi-target tracking by online learning a CRF model of appearance and motion patterns. Int. J. Comput. Vis. 107, 203–217 (2014)
Heili, A., López-Méndez, A., Odobez, J.M.: Exploiting long-term connectivity and visual motion in CRF-based multi-person tracking. IEEE Trans. Image Process. 23, 3040–3056 (2014)
Chen, D., Cao, X., Wang, L., Wen, F., Sun, J.: Bayesian face revisited: a joint formulation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 566–579. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33712-3_41
Huang, C., Wu, B., Nevatia, R.: Robust object tracking by hierarchical association of detection responses. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 788–801. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88688-4_58
Kuo, C.H., Nevatia, R.: How does person identity recognition help multi-person tracking?. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1217–1224. IEEE (2011)
Milan, A., Roth, S., Schindler, K.: Continuous energy minimization for multitarget tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36, 58–72 (2014)
Kuo, C.H., Huang, C., Nevatia, R.: Multi-target tracking by on-line learned discriminative appearance models. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 685–692. IEEE (2010)
Bak, S., Chau, D.P., Badie, J., Corvee, E., Bremond, F., Thonnat, M.: Multi-target tracking by discriminative analysis on Riemannian manifold. In: 2012 19th IEEE International Conference on Image Processing (ICIP), pp. 1605–1608. IEEE (2012)
Zamir, A.R., Dehghan, A., Shah, M.: GMCP-tracker: global multi-object tracking using generalized minimum clique graphs. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision – ECCV 2012. LNCS, vol. 7573, pp. 343–356. Springer, Heidelberg (2012)
Yang, B., Huang, C., Nevatia, R.: Learning affinities and dependencies for multi-target tracking using a CRF model. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1233–1240. IEEE (2011)
Heili, A., Chen, C., Odobez, J.: Detection-based multi-human tracking using a CRF model. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1673–1680. IEEE (2011)
Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)
Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1806–1819 (2011)
Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE (2011)
Nima Razavi, J.G., Gool, L.V.: Scalable multi-class object detection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1505–1512. IEEE (2011)
Andriyenko, A., Schindler, K.: Multi-target tracking by continuous energy minimization. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1265–1272. IEEE (2011)
Pets 2009 dataset. (http://www.cvg.rdg.ac.uk/PETS2009)
Ess, A., Leibe, B., Schindler, K., Van Gool, L.: Robust multiperson tracking from a mobile platform. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1831–1846 (2009)
Benfold, B., Reid, I.: Stable multi-target tracking in real-time surveillance video. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3457–3464. IEEE (2011)
Leal-Taixe, L., Milan, A., Reid, I., Roth, S., Schindler, K.: Motchallenge 2015: Towards a benchmark for multi-target tracking
Yang, B., Nevatia, R.: An online learned CRF model for multi-target tracking. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2034–2041. IEEE (2012)
Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 2756–2759. IEEE (2010)
Li, Y., Huang, C., Nevatia, R.: Learning to associate: hybridboosted multi-target tracker for crowded scene. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2953–2960. IEEE (2009)
Andriyenko, A., Schindler, K., Roth, S.: Discrete-continuous optimization for multi-target tracking. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1926–1933. IEEE (2012)
Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1820–1833 (2011)
Milan, A., Leal-Taixe, L., Schindler, K., Reid, I.: Joint tracking and segmentation of multiple targets. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5397–5406. IEEE (2015)
Leal Taixe, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., Savarese, S.: Learning an image-based motion context for multiple people tracking. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3542–3549. IEEE (2014)
Acknowledgement
This work was supported by the National Natural Science Foundation of China under Grant 61271328, 61671484 and 61401170.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Xiang, J., Hou, J., Gao, C., Sang, N. (2017). Data Association Based Multi-target Tracking Using a Joint Formulation. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10114. Springer, Cham. https://doi.org/10.1007/978-3-319-54190-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-54190-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54189-1
Online ISBN: 978-3-319-54190-7
eBook Packages: Computer ScienceComputer Science (R0)