Abstract
In this paper, we revisit the classical Bayesian face recognition method by Baback Moghaddam et al. and propose a new joint formulation. The classical Bayesian method models the appearance difference between two faces. We observe that this “difference” formulation may reduce the separability between classes. Instead, we model two faces jointly with an appropriate prior on the face representation. Our joint formulation leads to an EM-like model learning at the training time and an efficient, closed-formed computation at the test time. On extensive experimental evaluations, our method is superior to the classical Bayesian face and many other supervised approaches. Our method achieved 92.4% test accuracy on the challenging Labeled Face in Wild (LFW) dataset. Comparing with current best commercial system, we reduced the error rate by 10%.
Chapter PDF
Similar content being viewed by others
Keywords
- Face Recognition
- Linear Discriminant Analysis
- Mahalanobis Distance
- Discriminative Information
- Gabor Feature
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Moghaddam, B., Jebara, T., Pentland, A.: Bayesian face recognition. Pattern Recognition 33, 1771–1782 (2000)
Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The feret evaluation methodology for face-recognition algorithms. PAMI 22, 1090–1104 (2000)
Wang, X., Tang, X.: A unified framework for subspace face recognition. PAMI 26, 1222–1228 (2004)
Wang, X., Tang, X.: Subspace analysis using random mixture models. In: CVPR (2005)
Wang, X., Tang, X.: Bayesian face recognition using gabor features, pp. 70–73 (2003)
Li, Z., Tang, X.: Bayesian face recognition using support vector machine and face clustering. In: CVPR (2004)
Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification, vol. 10, pp. 207–244 (2005)
Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: ICML (2007)
Guillaumin, M., Verbeek, J.J., Schmid, C.: Is that you? metric learning approaches for face identification. In: ICCV (2009)
Ying, Y., Li, P.: Distance metric learning with eigenvalue optimization. Journal of Machine Learning Research 13, 1–26 (2012)
Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Attribute and simile classifiers for face verification. In: ICCV (2009)
Taigman, Y., Wolf, L., Hassner, T.: Multiple one-shots for utilizing class label information. In: BMVC (2009)
Yin, Q., Tang, X., Sun, J.: An associate-predict model for face recognition. In: CVPR (2011)
Zhu, C., Wen, F., Sun, J.: A rank-order distance based clustering algorithm for face tagging. In: CVPR (2011)
Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E., Hanson, A.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. In: ECCV (2008)
Taigman, Y., Wolf, L.: Leveraging billions of faces to overcome performance barriers in unconstrained face recognition. Arxiv preprint arXiv:1108.1122 (2011)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. PAMI 19, 711–720 (1997)
Ioffe, S.: Probabilistic Linear Discriminant Analysis. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part IV. LNCS, vol. 3954, pp. 531–542. Springer, Heidelberg (2006)
Prince, S., Li, P., Fu, Y., Mohammed, U., Elder, J.: Probabilistic models for inference about identity. PAMI 34, 144–157 (2012)
Susskind, J., Memisevic, R., Hinton, G., Pollefeys, M.: Modeling the joint density of two images under a variety of transformations. In: CVPR (2011)
Ramanan, D., Baker, S.: Local distance functions: A taxonomy, new algorithms, and an evaluation. In: ICCV (2009)
Nguyen, H.V., Bai, L.: Cosine Similarity Metric Learning for Face Verification. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 709–720. Springer, Heidelberg (2011)
Liang, L., Xiao, R., Wen, F., Sun, J.: Face Alignment Via Component-Based Discriminative Search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 72–85. Springer, Heidelberg (2008)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI 24, 971–987 (2002)
Cao, Z., Yin, Q., Tang, X., Sun, J.: Face recognition with learning-based descriptor. In: CVPR (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, D., Cao, X., Wang, L., Wen, F., Sun, J. (2012). Bayesian Face Revisited: A Joint Formulation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds) Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, vol 7574. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33712-3_41
Download citation
DOI: https://doi.org/10.1007/978-3-642-33712-3_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33711-6
Online ISBN: 978-3-642-33712-3
eBook Packages: Computer ScienceComputer Science (R0)