Abstract
This paper presents a pipeline which uses a multiatlas approach for multiorgan segmentation in whole-body CT images. In order to obtain accurate registrations between the target and the atlas images, we develop an adapted feature-based method which uses organ-specific features. These features are learnt during an offline preprocessing step, and thus, the algorithm still benefits from the speed of feature-based registration methods. These feature sets are then used to obtain pairwise non-rigid transformations using RANSAC followed by a thin-plate spline refinement or NiftyReg. The fusion of the transferred atlas labels is performed using a random forest classifier, and finally, the segmentation is obtained using graph cuts with a Potts model as interaction term. Our pipeline was evaluated on 20 organs in 10 whole-body CT images at the VISCERAL Anatomy Challenge, in conjunction with the International Symposium on Biomedical Imaging, Brooklyn, New York, in April 2015. It performed best on majority of the organs, with respect to the Dice index.
F. Fejne and M. Landgren—The authors assert equal contribution and joint first authorship.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Alvén J, Norlén A, Enqvist O, Kahl F (2016) Überatlas: fast and robust registration for multi-atlas segmentation. Pattern Recognit Lett. doi:10.1016/j.patrec.2016.05.001
Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239
Candemir S, Jaeger S, Palaniappan K, Musco J, Singh R, Xue Z, Karargyris A, Antani S, Thoma G, McDonald C (2014) Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans Med Imaging 33(2):577–590
Chu C, Oda M, Kitasaka T, Misawa K, Fujiwara M, Hayashi Y, Nimura Y, Rueckert D, Mori K (2013) Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N (eds) MICCAI 2013. LNCS, vol 8150. Springer, Heidelberg, pp 165–172. doi:10.1007/978-3-642-40763-5_21
Chui H, Rangarajan A (2000) A new algorithm for non-rigid point matching. In: IEEE conference on computer vision and pattern recognition, vol 2, pp 44–51
Chupin M, Gérardin E, Cuingnet R, Boutet C, Lemieux L, Lehéricy S, Benali H, Garnero L, Colliot O (2009) Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from adni. Hippocampus 19(6):579–587
Criminisi A, Shotton J, Konukoglu E (2011) Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found Trends\(\textregistered \) Comput Graph Vis 7:81–227
Eberly D (2008) Distance between point and triangle in 3D. Geometric Tools, LLC. http://www.geometrictools.com/
Han X (2013) Learning-boosted label fusion for multi-atlas auto-segmentation. In: Wu G, Zhang D, Shen D, Yan P, Suzuki K, Wang F (eds) MLMI 2013. LNCS, vol 8184. Springer, Cham, pp 17–24. doi:10.1007/978-3-319-02267-3_3
Han X, Hoogeman MS, Levendag PC, Hibbard LS, Teguh DN, Voet P, Cowen AC, Wolf TK (2008) Atlas-based auto-segmentation of head and neck CT images. In: Metaxas D, Axel L, Fichtinger G, Székely G (eds) MICCAI 2008. LNCS, vol 5242. Springer, Heidelberg, pp 434–441. doi:10.1007/978-3-540-85990-1_52
Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A (2006) Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1):115–126
Heckemann RA, Keihaninejad S, Aljabar P, Rueckert D, Hajnal JV, Hammers A (2010) Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. Neuroimage 51(1):221–227
Iglesias JE, Sabuncu MR (2015) Multi-atlas segmentation of biomedical images: a survey. Med Image Anal 24(1):205–219
Jamriška O, Sýkora D, Hornung A (2012) Cache-efficient graph cuts on structured grids. In: IEEE conference on computer vision and pattern recognition, pp 3673–3680
Jiménez-del-Toro OA, Müller H, Krenn M, Gruenberg K, Taha AA, Winterstein M, Eggel I, Foncubierta-Rodríguez A, Goksel O, Jakab A, Kontokotsios G, Langs G, Menze B, Fernandez TS, Schaer R, Walleyo A, Weber M, Cid YD, Gass T, Heinrich M, Jia F, Kahl F, Kechichian R, Mai D, Spanier AB, Vincent G, Wang C, Wyeth D, Hanbury A (2016) Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: VISCERAL anatomy benchmarks. IEEE Trans Med Imaging 35(11):2459–2475
Khalifa F, Beache G, Gimel’farb G, Suri J, El-Baz A (2011) State-of-the-art medical image registration methodologies: a survey. In: El-Baz AS, Rajendra Acharya U, Mirmehdi M, Suri JS (eds) Multi modality state-of-the-art medical image segmentation and registration methodologies. Springer, Heidelberg, pp 235–280
Kirisli HA, Schaap M, Klein S, Neefjes LA, Weustink AC, van Walsum T, Niessen WJ (2010) Fully automatic cardiac segmentation from 3D CTA data: a multi-atlas based approach. In: SPIE medical imaging, San Diego, USA
Klein A, Mensh B, Ghosh S, Tourville J, Hirsch J (2005) Mindboggle: automated brain labeling with multiple atlases. BMC Med Imaging 5(1):7
Kolmogorov V, Boykov Y (2005) What metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In: IEEE international conference on computer vision, vol 1, pp 564–571
Kolmogorov V, Zabin R (2004) What energy functions can be minimized via graph cuts? IEEE Trans Pattern Anal Mach Intell 26(2):147–159
Kurkure U, Le Y, Ju T, Carson J, Paragios N, Kakadiaris I (2011) Subdivision-based deformable model for geometric atlas fitting. In: IEEE international conference on computer vision, Barcelona, Spain
Lee JG, Gumus S, Moon CH, Kwoh CK, Bae KT (2014) Fully automated segmentation of cartilage from the MR images of knee using a multi-atlas and local structural analysis method. Med Phys 41(9)
Okada T, Linguraru MG, Hori M, Summers RM, Tomiyama N, Sato Y (2015) Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors. Med Image Anal 26(1):1–18
Ourselin S, Roche A, Subsol G, Pennec X, Ayache N (2001) Reconstructing a 3D structure from serial histological sections. Image Vis Comput 19(1–2):25–31
Pekar V, McNutt TR, Kaus MR (2004) Automated model-based organ delineation for radiotherapy planning in prostatic region. Int J Radiat Oncol Biol Phys 60(3):973–980
Rohlfing T, Brandt R, Menzel R, Maurer CR Jr (2004) Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4):1428–1442
Sanroma G, Wu G, Gao Y, Shen D (2014) Learning-based atlas selection for multiple-atlas segmentation. In: IEEE conference on computer vision and pattern recognition, Columbus, USA
Sotiras A, Davatzikos C, Paragios N (2013) Deformable medical image registration: a survey. IEEE Trans Med Imaging 32(7):1153–1190
Svärm L, Enqvist O, Kahl F, Oskarsson M (2015) Improving robustness for inter-subject medical image registration using a feature-based approach. In: International symposium on biomedical imaging
Taylor R, Stoianovici D (2003) Medical robotics in computer-integrated surgery. IEEE Trans Robot Autom 19(5):765–781
van der Lijn F, den Heijer T, Breteler MM, Niessen WJ (2008) Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts. NeuroImage 43(4):708–720
Wang H, Suh J, Dass SR, Pluta J, Craige C, Yushkevich P (2013) Multi-atlas segmentation with joint label fusion. IEEE Trans Pattern Anal Mach Intell 35(3):611–623
Wang L, Chen KC, Gao Y, Shi F, Liao S, Li G, Shen SGF, Yan J, Lee PKM, Chow B, Liu NX, Xia JJ, Shen D (2014) Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization. Med Phys 41(4):043503
Warfield S, Zou K, Wells W (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 27(3):903–921
Wolz R, Chu C, Misawa K, Fujiwara M, Mori K, Rueckert D (2013) Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans Med Imaging 32(9):1723–1730
Xu Z, Burke RP, Lee CP, Baucom RB, Poulose BK, Abramson RG, Landman BA (2015) Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning. Med Image Anal 24(1):18–27
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Open Access This chapter is distributed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the work’s Creative Commons license, unless indicated otherwise in the credit line; if such material is not included in the work’s Creative Commons license and the respective action is not permitted by statutory regulation, users will need to obtain permission from the license holder to duplicate, adapt or reproduce the material.
Copyright information
© 2017 The Author(s)
About this chapter
Cite this chapter
Fejne, F. et al. (2017). Multiatlas Segmentation Using Robust Feature-Based Registration. In: Hanbury, A., Müller, H., Langs, G. (eds) Cloud-Based Benchmarking of Medical Image Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-49644-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-49644-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49642-9
Online ISBN: 978-3-319-49644-3
eBook Packages: Computer ScienceComputer Science (R0)