Abstract
We present a novel framework for the segmentation of multiple organs in 3D abdominal CT images, which does not require registration with an atlas. Instead we use discriminative classifiers that have been trained on an array of 3D volumetric features and implicitly model the appearance of the organs of interest. We fully leverage all the available data and extract the features from inside supervoxels at multiple levels of detail. Parallel to this, we employ a hierarchical auto-context classification scheme, where the trained classifier at each level is applied back onto the image to provide additional features for the next level. The final segmentation is obtained using a hierarchical conditional random field fusion step. We have tested our approach on 20 contrast enhanced CT images of 8 organs from the VISCERAL dataset and obtained results comparable to the state-of-the-art methods that require very costly registration steps and a much larger corpus of training data. Our method is accurate, fast and general enough that may be applied to a variety of realistic clinical applications and any number of organs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Okada, T., Linguraru, M.G., Yoshida, Y., Hori, M., Summers, R.M., Chen, Y.-W., Tomiyama, N., Sato, Y.: Abdominal multi-organ segmentation of CT images based on hierarchical spatial modeling of organ interrelations. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging. LNCS, vol. 7029, pp. 173–180. Springer, Heidelberg (2012)
Chu, C., Oda, M., Kitasaka, T., Misawa, K., Fujiwara, M., Hayashi, Y., Nimura, Y., Rueckert, D., Mori, K.: Multi-organ segmentation based on spatially-divided probabilistic Atlas from 3D abdominal CT images. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 165–172. Springer, Heidelberg (2013)
Oda, M., Nakaoka, T., Kitasaka, T., Furukawa, K., Misawa, K., Fujiwara, M., Mori, K.: Organ segmentation from 3D abdominal CT images based on atlas selection and graph cut. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging. LNCS, vol. 7029, pp. 181–188. Springer, Heidelberg (2012)
Wang, Z., Bhatia, K., Glocker, B., Marvao, A., Dawes, T., Misawa, K., Mori, K., Rueckert, D.: Geodesic patch-based segmentation. In: Medical Image Computing and Computer-Assisted Intervention (2014)
Lombaert, H., Zikic, D., Criminisi, A., Ayache, N.: Laplacian Forests: semantic image segmentation by guided bagging. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 496–504. Springer, Heidelberg (2014)
Cuingnet, R., Prevost, R., et al.: Automatic detection and segmentation of Kidneys in 3D CT images using random forests. In: Medical Image Computing and Computer-Assisted Intervention (2012)
Holzer, M., Donner, R.: Over-segmentation of 3D medical image volumes based on monogenic cues. In: Proceedings of the CVWW, pp. 35–42 (2014)
Kovalev, V.A., Kruggel, F., Gertz, H.J., von Cramon, D.Y.: Three-dimensional texture analysis of MRI brain datasets. IEEE Trans. Med. Imaging 20(5), 424–433 (2001)
Frome, A., Huber, D., Kolluri, R., Bulow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: European Conference on Computer Vision, vol. 3 (2004)
Kläser, A., Marszaek, M., Schmid, C.: A spatio temporal descriptor based on 3D Gradients. In: British Machine Vision Conference (2008)
Sznitman, R., Becker, C., Fleuret, F., Fua, P.: Fast object detection with entropy-driven evaluation. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)
Tu, Z.: Auto-context and its application to high-level vision tasks. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)
Komodakis, N., et al.: Performance vs computational efficiency for optimizing single and dynamic MRFs: setting the state of the art with primal-dual strategies. Comput. Vis. Image Underst. 112(1), 14–29 (2008)
Goksel, O., del Toro, O.A.J., Foncubierta-Rodriguez, A., Müller, H.: Proceedings of the VISCERAL Anatomy3 benchmark workshop. In: IEEE International Symposium on Biomedical Imaging, CEUR Workshop Proceedings (2015)
Krenn, M., Hanbury, A., Langs, G.: Prototype of silver corpus merging framework (2014)
Wolz, R., Chu, C., Misawa, K., Fujiwara, M.: Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans. Med. Imaging 32(9), 1723–1730 (2013)
del Toro, O.A.J., Goksel, O., Menze, B., Müller, H., Langs, G., Weber, M., Eggel, I.: VISCERAL VISual Concept Extraction challenge in RAdioLogy: ISBI 2014 challenge organization. In: Goksel, O. (ed.) Proceedings of the VISCERAL Challenge at IEEE International Symposium on Biomedical Imaging, CEUR Workshop (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Zografos, V., Valentinitsch, A., Rempfler, M., Tombari, F., Menze, B. (2016). Hierarchical Multi-Organ Segmentation Without Registration in 3D Abdominal CT Images. In: Menze, B., et al. Medical Computer Vision: Algorithms for Big Data. MCV 2015. Lecture Notes in Computer Science(), vol 9601. Springer, Cham. https://doi.org/10.1007/978-3-319-42016-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-42016-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42015-8
Online ISBN: 978-3-319-42016-5
eBook Packages: Computer ScienceComputer Science (R0)