Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hierarchical Multi-Organ Segmentation Without Registration in 3D Abdominal CT Images

  • Conference paper
  • First Online:
Medical Computer Vision: Algorithms for Big Data (MCV 2015)

Abstract

We present a novel framework for the segmentation of multiple organs in 3D abdominal CT images, which does not require registration with an atlas. Instead we use discriminative classifiers that have been trained on an array of 3D volumetric features and implicitly model the appearance of the organs of interest. We fully leverage all the available data and extract the features from inside supervoxels at multiple levels of detail. Parallel to this, we employ a hierarchical auto-context classification scheme, where the trained classifier at each level is applied back onto the image to provide additional features for the next level. The final segmentation is obtained using a hierarchical conditional random field fusion step. We have tested our approach on 20 contrast enhanced CT images of 8 organs from the VISCERAL dataset and obtained results comparable to the state-of-the-art methods that require very costly registration steps and a much larger corpus of training data. Our method is accurate, fast and general enough that may be applied to a variety of realistic clinical applications and any number of organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Okada, T., Linguraru, M.G., Yoshida, Y., Hori, M., Summers, R.M., Chen, Y.-W., Tomiyama, N., Sato, Y.: Abdominal multi-organ segmentation of CT images based on hierarchical spatial modeling of organ interrelations. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging. LNCS, vol. 7029, pp. 173–180. Springer, Heidelberg (2012)

    Google Scholar 

  2. Chu, C., Oda, M., Kitasaka, T., Misawa, K., Fujiwara, M., Hayashi, Y., Nimura, Y., Rueckert, D., Mori, K.: Multi-organ segmentation based on spatially-divided probabilistic Atlas from 3D abdominal CT images. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 165–172. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Oda, M., Nakaoka, T., Kitasaka, T., Furukawa, K., Misawa, K., Fujiwara, M., Mori, K.: Organ segmentation from 3D abdominal CT images based on atlas selection and graph cut. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging. LNCS, vol. 7029, pp. 181–188. Springer, Heidelberg (2012)

    Google Scholar 

  4. Wang, Z., Bhatia, K., Glocker, B., Marvao, A., Dawes, T., Misawa, K., Mori, K., Rueckert, D.: Geodesic patch-based segmentation. In: Medical Image Computing and Computer-Assisted Intervention (2014)

    Google Scholar 

  5. Lombaert, H., Zikic, D., Criminisi, A., Ayache, N.: Laplacian Forests: semantic image segmentation by guided bagging. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 496–504. Springer, Heidelberg (2014)

    Google Scholar 

  6. Cuingnet, R., Prevost, R., et al.: Automatic detection and segmentation of Kidneys in 3D CT images using random forests. In: Medical Image Computing and Computer-Assisted Intervention (2012)

    Google Scholar 

  7. Holzer, M., Donner, R.: Over-segmentation of 3D medical image volumes based on monogenic cues. In: Proceedings of the CVWW, pp. 35–42 (2014)

    Google Scholar 

  8. Kovalev, V.A., Kruggel, F., Gertz, H.J., von Cramon, D.Y.: Three-dimensional texture analysis of MRI brain datasets. IEEE Trans. Med. Imaging 20(5), 424–433 (2001)

    Article  Google Scholar 

  9. Frome, A., Huber, D., Kolluri, R., Bulow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: European Conference on Computer Vision, vol. 3 (2004)

    Google Scholar 

  10. Kläser, A., Marszaek, M., Schmid, C.: A spatio temporal descriptor based on 3D Gradients. In: British Machine Vision Conference (2008)

    Google Scholar 

  11. Sznitman, R., Becker, C., Fleuret, F., Fua, P.: Fast object detection with entropy-driven evaluation. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)

    Google Scholar 

  12. Tu, Z.: Auto-context and its application to high-level vision tasks. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  13. Komodakis, N., et al.: Performance vs computational efficiency for optimizing single and dynamic MRFs: setting the state of the art with primal-dual strategies. Comput. Vis. Image Underst. 112(1), 14–29 (2008)

    Article  Google Scholar 

  14. Goksel, O., del Toro, O.A.J., Foncubierta-Rodriguez, A., Müller, H.: Proceedings of the VISCERAL Anatomy3 benchmark workshop. In: IEEE International Symposium on Biomedical Imaging, CEUR Workshop Proceedings (2015)

    Google Scholar 

  15. Krenn, M., Hanbury, A., Langs, G.: Prototype of silver corpus merging framework (2014)

    Google Scholar 

  16. Wolz, R., Chu, C., Misawa, K., Fujiwara, M.: Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans. Med. Imaging 32(9), 1723–1730 (2013)

    Article  Google Scholar 

  17. del Toro, O.A.J., Goksel, O., Menze, B., Müller, H., Langs, G., Weber, M., Eggel, I.: VISCERAL VISual Concept Extraction challenge in RAdioLogy: ISBI 2014 challenge organization. In: Goksel, O. (ed.) Proceedings of the VISCERAL Challenge at IEEE International Symposium on Biomedical Imaging, CEUR Workshop (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Zografos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zografos, V., Valentinitsch, A., Rempfler, M., Tombari, F., Menze, B. (2016). Hierarchical Multi-Organ Segmentation Without Registration in 3D Abdominal CT Images. In: Menze, B., et al. Medical Computer Vision: Algorithms for Big Data. MCV 2015. Lecture Notes in Computer Science(), vol 9601. Springer, Cham. https://doi.org/10.1007/978-3-319-42016-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42016-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42015-8

  • Online ISBN: 978-3-319-42016-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics