Nothing Special   »   [go: up one dir, main page]

Skip to main content

App2Check Extension for Sentiment Analysis of Amazon Products Reviews

  • Conference paper
  • First Online:
Semantic Web Challenges (SemWebEval 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 641))

Included in the following conference series:

Abstract

App2Check is a web application and an engine for opinion mining applied to user comments evaluating apps published in app stores. It includes features ranging from topic extraction, sentiment analysis of user reviews and topics, sentiment vs rating chronological trend, sentiment trend comparison between competitors, and many others. App2Check goal is to help app owners and makers to evaluate in real time their own apps, compare them with the apps available in the market, and extract from this analysis useful insights to perform a continuous improvement during both design and maintenance process. In this paper we describe App2Check features, by focusing in particular on the ones applying semantic and sentiment analysis to apps reviews, and we present an experimental comparison respect to 19 research tools. Then we show App2Check performance when applied to Amazon products reviews. In this experimental evaluation, we show App2Check performance with and without a specific training on Amazon products reviews, and we compare our results with two state-of-the-art research tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Palmero Aprosio, A., Corcoglioniti, F., Dragoni, M., Rospocher, M.: Supervised opinion frames detection with RAID. In: Gandon, F., et al. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 251–263. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25518-7_22

    Chapter  Google Scholar 

  2. Araújo, M., Gonçalves, P., Cha, M., Benevenuto, F.: iFeel: a system that compares and combines sentiment analysis methods. In: Proceedings of the 23rd International Conference on World Wide Web, WWW 2014 Companion, pp. 75–78. ACM, New York (2014). http://doi.acm.org/10.1145/2567948.2577013

  3. Araújo, M., dos Reis, J.C., Pereira, A.M., Benevenuto, F.: An evaluation of machine translation for multilingual sentence-level sentiment analysis. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy, 4–8 April 2016, pp. 1140–1145 (2016). http://doi.acm.org/10.1145/2851613.2851817

  4. Chung, J.K.-C., Wu, C.-E., Tsai, R.T.-H.: Polarity detection of online reviews using sentiment concepts: NCU IISR Team at ESWC-14 challenge on concept-level sentiment analysis. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 53–58. Springer, Heidelberg (2014)

    Google Scholar 

  5. Di Rosa, E., Durante, A.: App2check: a machine learning-based system for sentiment analysis of app reviews in Italian language. In: Proceedings of the International Workshop on Social Media World Sensors (Sideways)- Held in conjunction with LREC 2016, pp. 8–11 (2016). http://www.lrec-conf.org/proceedings/lrec2016/workshops/LREC2016Workshop-Sideways_Proceedings.pdf

  6. Dragoni, M., Tettamanzi, A., da Costa Pereira, C.: Dranziera: an evaluation protocol for multi-domain opinion mining. In: Chair, N.C.C., Choukri, K., Declerck, T., Goggi, S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), European Language Resources Association (ELRA), Paris, France, May 2016

    Google Scholar 

  7. Dragoni, M., Tettamanzi, A.G.B., da Costa Pereira, C.: A fuzzy system for concept-level sentiment analysis. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 21–27. Springer, Heidelberg (2014)

    Google Scholar 

  8. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: KDD, pp. 168–177. ACM (2004)

    Google Scholar 

  9. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995). http://doi.acm.org/10.1145/219717.219748

    Article  Google Scholar 

  10. Nakov, P., Ritter, A., Sara, R., Sebastiani, F., Stoyanov, V.: Semeval-2016 task 4: sentiment analysis in Twitter. In: Proceedings of the 10th International Workshop on Semantic Evaluation, Association for Computational Linguistics (2016). http://alt.qcri.org/semeval2016/task4/

  11. Schouten, K., Frasincar, F.: The benefit of concept-based features for sentiment analysis. In: Gandon, F., et al. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 223–233. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25518-7_19

    Chapter  Google Scholar 

  12. Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642. Association for Computational Linguistics, Stroudsburg, October 2013

    Google Scholar 

  13. Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: Sentiment strength detection in short informal text. JASIST 61(12), 2544–2558 (2010). http://dx.doi.org/10.1002/asi.21416

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Di Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Di Rosa, E., Durante, A. (2016). App2Check Extension for Sentiment Analysis of Amazon Products Reviews. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds) Semantic Web Challenges. SemWebEval 2016. Communications in Computer and Information Science, vol 641. Springer, Cham. https://doi.org/10.1007/978-3-319-46565-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46565-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46564-7

  • Online ISBN: 978-3-319-46565-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics