Nothing Special   »   [go: up one dir, main page]

Skip to main content

Two Algorithms Median Filtering to Identify the Time Series Trend

  • Chapter
  • First Online:
Advances in Intelligent Systems and Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 512))

  • 1662 Accesses

Abstract

The paper presents two algorithms median smoothing time series. These algorithms are finite procedures. The number of steps of the algorithms defined volume time series. Use these algorithms do not require computation and presents the trend using local medians. An important moment in behalf of the offered algorithms of median filtration is that it is not used the subjective factor, for example, a choice of the window size, quantities of iterations or any other parameters. The procedure of median filtration is connected only with concrete quantity of levels of a time series, and paired or unpaired of their quantity has no basic value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kendall, M.G.: Design and analysis, and time-series. In: Kendall, M.G., Stuart, A. (eds.) The Advanced Theory Of Statistics, in Three Volumes, vol. 3, 4th edn. Oxford University Press, London (1987)

    Google Scholar 

  2. Pollard, J.H.: A handbook of numerical and statistical techniques. In: Pollard, J.H., vol. 1, Aufl., XVI, 349 S. Cambridge University Press, Cambridge (1977)

    Google Scholar 

  3. Brown, R.G.: Exponential smoothing for predicting demand. https://industrydocuments.library.ucsf.edu/tobacco/docs/jzlc0130. Accessed 11 Oct 2015

  4. Brown, R.G.: Smoothing forecasting and prediction of discrete time series. In: Brown, R.G. p. cm. Reprint. Englewood Cliffs, NJ (1963)

    Google Scholar 

  5. Tukey, W.J.: Exploratory data analysis, In: Tukey, W.J. (ed.) p. 688. Addison-Wesley, Reading (1977)

    Google Scholar 

  6. Huang, T.S.: Two-dimensional digital signal processing II: transforms and median filters. In: Huang, T.S., Justusson, B.I., Nussbaum, H.J., Tyan, S.G., Zohar, S., (eds.) vol. XI, p. 224. Springer, Berlin (1981)

    Google Scholar 

  7. Stork, M.: Median filters theory and applications. In: Stork, M. (ed.). http://www.emo.org.tr/ekler/2130c418d4f02c7_ek.pdf. Accessed 22 June 2015

  8. Arias-Castro, E.: Does median filtering truly preserve edges better than linear filtering? Ann. Stat. 37(3), 1172–2009 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fried, R.: On the robust detection of edges in time series filtering. Comput. Stat. Data Anal. 52(2), 1063–1074 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kenneth, E.B.: Order statistic filtering and smoothing of time series, Part II. In: Barner, K.E., Arce, G.R. (eds.) Handbook of Statistics, vol. 17, pp. 555–602 (1998)

    Google Scholar 

  11. Liu, S.: Combining pseudo-median filter and median filter to improve performance. In: Liu, S., Chen, L., Fan, X., Qu, Z., Yang, X. (eds.). http://www.meeting.edu.cn/meeting/UploadPapers/1281582612718.pdf. Accessed 22 June 2015

  12. Lukin, V.V.: Adaptive dct-based 1-d filtering of poisson and mixed poisson and impulsive noise. In: Lukin, V.V., Fevralev, D.V., Abramov, S.K., Peltonen, S., Astola, J. (eds.). http://www.eurasip.org/Proceedings/Ext/NLA2008/papers/cr1002.pdf. Accessed 22 June 2015

  13. Yin, L.: Weighted median filters: a tutorial. In: Yin, L., Yang, R., Gabbouj, M., Neuvo, Y. (eds.) IEEE Transactions on Circuits and Systems-11: Analog and Digital Signal Processing, vol. 43, pp. 157–192 (1996)

    Google Scholar 

  14. Liu, Y.: A 1-D time-varying median filter for seismic random, spike-like noise elimination. Geophysics 74(1), V17–V24 (2009)

    Article  Google Scholar 

  15. Chilingarian, A.: Median filtering algorithms for multichannel detectors. In: Chilingarian, A., Hovhannisyan, A., Mailyan, B (eds.). In Proceedings of the 31st icrc, Lodz 1. http://icrc2009.uni.lodz.pl/proc/html/

  16. Pęksiński, J.: Estimation of the variance of the random component in the time series with digital smoothing. Logistyka 3, 5047–5052 (2014)

    Google Scholar 

  17. Kemal, O.: Design and implementation of a single-chip 1-d median filter. Trans. Acoust. Speech Signal Process. 31(5), 1164–1168 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Kaminsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dmitriv, H., Kaminsky, R. (2017). Two Algorithms Median Filtering to Identify the Time Series Trend. In: Shakhovska, N. (eds) Advances in Intelligent Systems and Computing. Advances in Intelligent Systems and Computing, vol 512. Springer, Cham. https://doi.org/10.1007/978-3-319-45991-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45991-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45990-5

  • Online ISBN: 978-3-319-45991-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics