Abstract
Information about the level of signal interference, allows you to select the appropriate method pre-processing information. Assuming that the disturbance is a process additive, a normal distribution can do this using the smoothing filters, and in particular the median filter. This chapter presents a method of estimating the level of disturbance, based on median filtration and the assumption that the smoothing process applies to noise, exclusively. The knowledge of a noise reduction coefficient enables the determining of an estimated quantity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ljung, L.: System Identification. Theory for User. Prentice-Hall, Englewood Cliffs (1987)
Poor, H.: An Introduction to Signal Detection and Estimation. Springer, New York (1985)
Ferrario, P.G.: Local Variance Estimation for Uncensored and Censored Observations. Springer (2013)
Mitra, S.K., Kaiser, J.F.: Handbook for Digital Signal Processing. John Willey & Sons (1993)
Kowalski, J.P., Peksinski, J., Mikolajczak, G.: Detection of noise in digital images by using the averaging filter name COV. In: Selamat, A., Nguyen, N.T., Haron, H. (eds.) ACIIDS 2013, Part II. LNCS (LNAI), vol. 7803, pp. 1–8. Springer, Heidelberg (2013)
Peksinski, J., Stefanowski, S., Mikolajczak, G.: Estimating the level of noise in digital images. In: Kanellopoulos, D.N. (ed.) Intelligent Multimedia Technologies for Networking Applications: Techniques and Tools. Information Science Reference, pp. 409–433 (2013)
Pi, H., Peterson, C.: Finding the embedding dimension and variable dependencies in time series. Neural Computation 6(3), 509–520 (1994)
Eirola, E., Liitiainen, E., Lendasse, A., et al.: Using the delta test for variable selection. In: Proceedings of the European Symposium on Artificial Neural Networks, ESANN 2008, Bruges, Belgium, pp. 25–30 (2008)
Jones, A.: New tools in non-linear modelling and prediction. Computational Management Science 1(2), 109–149 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Peksinski, J., Mikolajczak, G., Kowalski, J.P. (2015). Estimation of the Level of Disturbance in Time Series Using a Median Filter. In: Zgrzywa, A., Choroś, K., Siemiński, A. (eds) New Research in Multimedia and Internet Systems. Advances in Intelligent Systems and Computing, vol 314. Springer, Cham. https://doi.org/10.1007/978-3-319-10383-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-10383-9_9
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10382-2
Online ISBN: 978-3-319-10383-9
eBook Packages: EngineeringEngineering (R0)