Nothing Special   »   [go: up one dir, main page]

Skip to main content

Estimation of the Level of Disturbance in Time Series Using a Median Filter

  • Conference paper
New Research in Multimedia and Internet Systems

Abstract

Information about the level of signal interference, allows you to select the appropriate method pre-processing information. Assuming that the disturbance is a process additive, a normal distribution can do this using the smoothing filters, and in particular the median filter. This chapter presents a method of estimating the level of disturbance, based on median filtration and the assumption that the smoothing process applies to noise, exclusively. The knowledge of a noise reduction coefficient enables the determining of an estimated quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ljung, L.: System Identification. Theory for User. Prentice-Hall, Englewood Cliffs (1987)

    Google Scholar 

  2. Poor, H.: An Introduction to Signal Detection and Estimation. Springer, New York (1985)

    Google Scholar 

  3. Ferrario, P.G.: Local Variance Estimation for Uncensored and Censored Observations. Springer (2013)

    Google Scholar 

  4. Mitra, S.K., Kaiser, J.F.: Handbook for Digital Signal Processing. John Willey & Sons (1993)

    Google Scholar 

  5. Kowalski, J.P., Peksinski, J., Mikolajczak, G.: Detection of noise in digital images by using the averaging filter name COV. In: Selamat, A., Nguyen, N.T., Haron, H. (eds.) ACIIDS 2013, Part II. LNCS (LNAI), vol. 7803, pp. 1–8. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Peksinski, J., Stefanowski, S., Mikolajczak, G.: Estimating the level of noise in digital images. In: Kanellopoulos, D.N. (ed.) Intelligent Multimedia Technologies for Networking Applications: Techniques and Tools. Information Science Reference, pp. 409–433 (2013)

    Google Scholar 

  7. Pi, H., Peterson, C.: Finding the embedding dimension and variable dependencies in time series. Neural Computation 6(3), 509–520 (1994)

    Article  Google Scholar 

  8. Eirola, E., Liitiainen, E., Lendasse, A., et al.: Using the delta test for variable selection. In: Proceedings of the European Symposium on Artificial Neural Networks, ESANN 2008, Bruges, Belgium, pp. 25–30 (2008)

    Google Scholar 

  9. Jones, A.: New tools in non-linear modelling and prediction. Computational Management Science 1(2), 109–149 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Peksinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Peksinski, J., Mikolajczak, G., Kowalski, J.P. (2015). Estimation of the Level of Disturbance in Time Series Using a Median Filter. In: Zgrzywa, A., Choroś, K., Siemiński, A. (eds) New Research in Multimedia and Internet Systems. Advances in Intelligent Systems and Computing, vol 314. Springer, Cham. https://doi.org/10.1007/978-3-319-10383-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10383-9_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10382-2

  • Online ISBN: 978-3-319-10383-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics