Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Prediction-Correction Approach for Real-Time Optical Flow Computation Using Stereo

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9796))

Included in the following conference series:

Abstract

Estimating the optical flow robustly in real-time is still a challenging issue as revealed by current KITTI benchmarks. We propose an original two-step method for fast and performant optical flow estimation from stereo vision. The first step is the prediction of the flow due to the ego-motion, efficiently conducted by stereo-matching and visual odometry. The correction step estimates the motion of mobile objects. Algorithmic choices are justified by empirical studies on real datasets. Our method achieves framerate processing on images of realistic size, and provides results comparable or better than methods having computation times one or two orders of magnitude higher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3), 500–513 (2001)

    Article  Google Scholar 

  3. Chakrabarti, A., Xiong, Y., Gortler, S.J., Zickler, T.: Low-level vision by consensus in a spatial hierarchy of regions. In: CVPR (2015)

    Google Scholar 

  4. Derome, M., Plyer, A., Sanfourche, M., Le Besnerais, G.: Real-time mobile object detection using stereo. In: ICARCV (2014)

    Google Scholar 

  5. Derome, M., Plyer, A., Sanfourche, M., Le Besnerais, G.: Moving object detection in real-time using stereo from a mobile platform. Unmanned Syst. 3(4), 253–266 (2015)

    Article  Google Scholar 

  6. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  7. Gehrig, S.K., Eberli, F., Meyer, T.: A real-time low-power stereo vision engine using semi-global matching. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 134–143. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  9. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Hirschmller, H.: Stereo processing by semiglobal matching and mutual information. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)

    Article  Google Scholar 

  11. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  12. Le Besnerais, G., Champagnat, F.: Dense optical flow by iterative local window registration. In: ICIP (2005)

    Google Scholar 

  13. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI, pp. 674–679 (1981)

    Google Scholar 

  14. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: CVPR (2015)

    Google Scholar 

  15. Müller, T., Rannacher, J., Rabe, C., Franke, U.: Feature- and depth-supported modified total variation optical flow for 3D motion field estimation in real scenes. In: CVPR (2011)

    Google Scholar 

  16. Plyer, A., Le Besnerais, G., Champagnat, F.: Massively parallel Lucas Kanade optical flow for real-time video processing applications. J. Real-Time Image Proc. 11(4), 713–730 (2016)

    Article  Google Scholar 

  17. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: EpicFlow: edge-preserving interpolation of correspondences for optical flow. In: CVPR (2015)

    Google Scholar 

  18. Sanfourche, M., Vittori, V., Le Besnerais, G.: eVO: a realtime embedded stereo odometry for MAV applications. In: IROS (2013)

    Google Scholar 

  19. Sizintsev, M., Kuthirummal, S., Samarasekera, S., Kumar, R., Sawhney, H.S., Chaudhry, A.: GPU accelerated realtime stereo for augmented reality. In: 3DPVT (2010)

    Google Scholar 

  20. Vogel, C., Schindler, K., Roth, S.: 3D scene flow estimation with a piecewise rigid scene model. Int. J. Comput. Vis. 115, 1 (2015)

    Article  MathSciNet  Google Scholar 

  21. Wedel, A., Brox, T., Vaudrey, T., Rabe, C., Franke, U., Cremers, D.: Stereoscopic scene flow computation for 3D motion understanding. Int. J. Comput. Vis. 95(1), 29–51 (2011)

    Article  MATH  Google Scholar 

  22. Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An improved algorithm for TV-L \(^1\) optical flow. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds.) Statistical and Geometrical Approaches to Visual Motion Analysis. LNCS, vol. 5604, pp. 23–45. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: Deepflow: large displacement optical flow with deep matching. In: ICCV (2013)

    Google Scholar 

  24. Yamaguchi, K., McAllester, D., Urtasun, R.: Efficient joint segmentation, occlusion labeling, stereo and flow estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 756–771. Springer, Heidelberg (2014)

    Google Scholar 

  25. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L \(^{1}\) optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was sponsored by the Direction Générale de l’Armement (DGA) of the French Ministry of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Derome .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Derome, M., Plyer, A., Sanfourche, M., Le Besnerais, G. (2016). A Prediction-Correction Approach for Real-Time Optical Flow Computation Using Stereo. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45886-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45885-4

  • Online ISBN: 978-3-319-45886-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics