Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Stereoscopic Scene Flow Computation for 3D Motion Understanding

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Building upon recent developments in optical flow and stereo matching estimation, we propose a variational framework for the estimation of stereoscopic scene flow, i.e., the motion of points in the three-dimensional world from stereo image sequences. The proposed algorithm takes into account image pairs from two consecutive times and computes both depth and a 3D motion vector associated with each point in the image. In contrast to previous works, we partially decouple the depth estimation from the motion estimation, which has many practical advantages. The variational formulation is quite flexible and can handle both sparse or dense disparity maps. The proposed method is very efficient; with the depth map being computed on an FPGA, and the scene flow computed on the GPU, the proposed algorithm runs at frame rates of 20 frames per second on QVGA images (320×240 pixels). Furthermore, we present solutions to two important problems in scene flow estimation: violations of intensity consistency between input images, and the uncertainty measures for the scene flow result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aujol, J. F., Gilboa, G., Chan, T., & Osher, S. (2006). structure-texture image decomposition—modeling, algorithms, and parameter selection. International Journal of Computer Vision, 67(1), 111–136.

    Article  Google Scholar 

  • Badino, H. (2004). A robust approach for ego-motion estimation using a mobile stereo platform. In Proc. int. workshop on complex motion (IWCM04) (pp. 198–208). Berlin: Springer.

    Google Scholar 

  • Black, M. J., & Anandan, P. (1996). The robust estimation of multiple motions: parametric and piecewise smooth flow fields. Computer Vision and Image Understanding, 63(1), 75–104.

    Article  Google Scholar 

  • Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9), 1124–1137.

    Article  Google Scholar 

  • Brox, T. (2005). From pixels to regions: partial differential equations in image analysis. PhD thesis, Faculty of Mathematics and Computer Science, Saarland University, Germany.

  • Brox, T., Bruhn, A., Papenberg, N., & Weickert, J. (2004). High accuracy optical flow estimation based on a theory for warping. In Proc. European conf. on computer vision (ECCV) (pp. 25–36). Berlin: Springer.

    Google Scholar 

  • Bruhn, A., & Weickert, J. (2006). Geometric properties for incomplete data: Vols. 283–298. A confidence measure for variational optic flow methods. Berlin: Springer.

    Google Scholar 

  • Bruhn, A., Weickert, J., Kohlberger, T., & Schnörr, C. (2005). Discontinuity preserving computation of variational optic flow in real-time. In Proc. int. conf. on scale-space (pp. 279–290). Berlin: Springer.

    Google Scholar 

  • Costeira, J., & Kanande, T. (1995). A multi-body factorization method for motion analysis. In Proc. IEEE int. conf. on computer vision (ICCV) (pp. 1071–1076).

    Chapter  Google Scholar 

  • Franke, U., & Joos, A. (2000). Real-time stereo vision for urban traffic scene understanding. In Proc. IEEE intelligent vehicles symposium (pp. 273–278). Dearborn: IEEE Computer Society.

    Google Scholar 

  • Gong, M. (2009). Real-time joint disparity and disparity flow estimation on programmable graphics hardware. Computer Vision and Image Understanding, 113(1), 90–100.

    Article  Google Scholar 

  • Gong, M., & Yang, Y. H. (2006). Disparity flow estimation using orthogonal reliability-based dynamic programming. In Proc. int. conf. on pattern recognition (ICPR) (pp. 70–73). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  • Hartley, R. I., & Zisserman, A. (2000). Multiple view geometry in computer vision. Cambridge: Cambridge University Press. ISBN:0521623049.

    MATH  Google Scholar 

  • Hirschmüller, H. (2006). Stereo vision in structured environments by consistent semi-globalmatching. In Proc. IEEE int. conf. on computer vision and pattern recognition (CVPR) (pp. 2386–2393). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  • Hirschmüller, H. (2008). Stereo processing by semiglobal matching and mutual information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 328–341.

    Article  Google Scholar 

  • Horn, B., & Schunck, B. (1981). Determining optical flow. Artificial Intelligence, 17, 185–203.

    Article  Google Scholar 

  • Hu, X., & Mordohai, P. (2010). Evaluation of stereo condence indoors and outdoors. In Proc. IEEE int. conf. on computer vision and pattern recognition (CVPR). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  • Huguet, F., & Devernay, F. (2007). A variational method for scene flow estimation from stereo sequences. In Proc. IEEE int. conf. on computer vision (ICCV) (pp. 1–7). Los Alamitos: IEEE Computer Society. http://www-prima.imag.fr/prima/pub/Publications/2007/HD07/.

    Google Scholar 

  • Isard, M., & MacCormick, J. (2006). Dense motion and disparity estimation via loopy belief propagation. In Lecture Notes in Computer Science: Vol. 3852. Asian conf. on computer vision (ACCV) (pp. 32–41). Berlin: Springer. http://dblp.uni-trier.de/db/conf/accv/accv2006-2.html#IsardM06.

    Google Scholar 

  • Kanatani, K., & Sugaya, Y. (2004). Multi-stage optimization for multi-body motion segmentation. IEICE Transactions on Information and Systems E87-D(7), 1935–1942.

    Google Scholar 

  • Kolmogorov, V., & Zabih, R. (2002). What energy functions can be minimized via graph cuts? In Proc. European conf. on computer vision (ECCV) (pp. 65–81).

    Google Scholar 

  • Mahalanobis, P. C. (1936). On the generalised distance in statistics. In Proc. of the National Institute of Science of India 12 (pp. 49–55).

    Google Scholar 

  • Mémin, E., & Pérez, P. (1998). Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Transactions on Image Processing, 7(5), 703–719.

    Article  Google Scholar 

  • Min, D., & Sohn, K. (2006). Edge-preserving simultaneous joint motion-disparity estimation. In Proc. int. conf. on pattern recognition (ICPR) (pp. 74–77). Washington: IEEE Computer Society. doi:10.1109/ICPR.2006.470.

    Google Scholar 

  • Patras, I., Hendriks, E., & Tziritas, G. (1996). A joint motion/disparity estimation method for the construction of stereo interpolated images in stereoscopic image sequences. In Proc. int. conf. on pattern recognition (ICPR) (p. 359). Heijen: IEEE Computer Society.

    Chapter  Google Scholar 

  • Pons, J. P., Keriven, R., & Faugeras, O. (2007). Multi-view stereo reconstruction and scene flow estimation with a global image-based matching score. International Journal of Computer Vision, 72(2), 179–193. doi:10.1007/s11263-006-8671-5.

    Article  Google Scholar 

  • Rabe, C., Franke, U., & Gehrig, S. (2007). Fast detection of moving objects in complex scenarios. In Proc. IEEE intelligent vehicles symposium (pp. 398–403). Los Alamitos: IEEE Computer Society.

    Chapter  Google Scholar 

  • Rao, S. R., Tron, R., Vidal, R., & Ma, Y. (2008). Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories. In Proc. IEEE int. conf. on computer vision and pattern recognition (CVPR).

    Google Scholar 

  • Rudin, L., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60, 259–268.

    Article  MATH  Google Scholar 

  • Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondencealgorithms. In Proc. IEEE int. conf. on computer vision (ICCV) (pp. 7–42). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  • Shimizu, M., & Okutomi, M. (2001). Precise sub-pixel estimation on area-based matching. In Proc. IEEE int. conf. on computer vision (ICCV) (pp. 90–97). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  • Stein, F. (2004). Efficient computation of optical flow using the census transform. In Proc. DAGM (pattern recognition) (pp. 79–86). Berlin: Springer.

    Google Scholar 

  • Stüben, K., & Trottenberg, U. (1982). Lecture notes in mathematics: Vol. 960. Multigrid methods: fundamental algorithms, model problem analysis and applications. Berlin: Springer.

    Google Scholar 

  • Tomasi, C., & Kanade, T. (1991). Detection and tracking of point features. Tech. Rep. CMU-CS-91-132, Carnegie Mellon University. citeseer.ist.psu.edu/tomasi91detection.html.

  • University of Auckland (2008). .enpeda. Image Sequence Analysis Test Site (EISATS). http://www.mi.auckland.ac.nz/EISATS/.

  • Vaudrey, T., Rabe, C., Klette, R., & Milburn, J. (2008). Differences between stereo and motion behaviour on synthetic and real-world stereo sequences. In Proc. int. conf. on image and vision computing New Zealand (IVCNZ). Los Alamitos: IEEE Computer Society. IEEE Xplore:10.1109/IVCNZ.2008.4762133.

    Google Scholar 

  • Vaudrey, T., Morales, S., Wedel, A., & Klette, R. (2010). Generalised residual images’ effect on illumination artifact removal for correspondence algorithms. Pattern Recognition. doi:10.1016/j.patcog.2010.05.036.

  • Vedula, S., Baker, S., Rander, P., Collins, R., & Kanade, T. (2005). Three-dimensional scene flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3), 475–480.

    Article  Google Scholar 

  • Wedel, A., Pock, T., Zach, C., Cremers, D., & Bischof, H. (2008a). An improved algorithm for TV-L1 optical flow. In Revised papers int. Dagstuhl seminar on statistical and geometrical approaches to visual motion analysis (pp. 23–45). Berlin: Springer.

    Google Scholar 

  • Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., & Cremers, D. (2008b). Efficient dense scene flow from sparse or dense stereo data. In Proc. European conf. on computer vision (ECCV) (pp. 739–751). Berlin: Springer.

    Google Scholar 

  • Wedel, A., Vaudrey, T., Meissner, A., Rabe, C., Brox, T., Franke, U., & Cremers, D. (2008c). An evaluation approach for scene flow with decoupled motion and position. In Revised papers int. Dagstuhl seminar on statistical and geometrical approaches to visual motion analysis (pp. 46–69). Berlin: Springer.

    Google Scholar 

  • Wedel, A., Rabe, C., Meissner, A., Franke, U., & Cremers, D. (2009). Detection and segmentation of independently moving objects from dense scene flow. In D. Cremers, Y. Boykov, A. Blake, & F. R. Schmidt (Eds.), Energy minimization methods in computer vision and pattern recognition (EMMCVPR) (Vol. 5681, pp. 14–27). Berlin: Springer.

    Chapter  Google Scholar 

  • Werlberger, M., Pock, T., & Bischof, H. (2010). Motion estimation with non-local total variation regularization. In Proc. IEEE int. conf. on computer vision and pattern recognition (CVPR). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  • Yan, J., & Pollefeys, M. (2006). A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In LNCS: Vol. 3954. Proc. European conf. on computer vision (ECCV) (pp. 94–106). Berlin: Springer.

    Google Scholar 

  • Young, D. M. (1971). Iterative solution of large linear systems. New York: Academic Press.

    MATH  Google Scholar 

  • Zach, C., Pock, T., & Bischof, H. (2007). A duality based approach for realtime tv-L 1 optical flow. In Proc. DAGM (pattern recognition) (pp. 214–223). Berlin: Springer.

    Google Scholar 

  • Zhang, Y., & Kambhamettu, C. (2001). On 3d scene flow and structure estimation. In Proc. IEEE int. conf. on computer vision and pattern recognition (CVPR) (Vol. 2, pp. 778–778). Los Alamitos: IEEE Computer Society. doi:10.1109/CVPR.2001.991044.

    Google Scholar 

  • Zimmer, H., Bruhn, A., Weickert, J., Valgaerts, L., Salgado, A., Rosenhahn, B., & Seidel, H. P. (2009). Complementary optic flow. In Energy minimization methods in computer vision and pattern recognition (EMMCVPR) (pp. 207–220). Berlin: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Wedel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wedel, A., Brox, T., Vaudrey, T. et al. Stereoscopic Scene Flow Computation for 3D Motion Understanding. Int J Comput Vis 95, 29–51 (2011). https://doi.org/10.1007/s11263-010-0404-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0404-0

Keywords

Navigation